I just tried doing a countDistinct over a window and got this error:
AnalysisException: u'Distinct window functions are not supported: count(distinct color#1926)
Is there a way to do a distinct count over a window in pyspark?
Here's some example code:
from pyspark.sql.window import Window    
from pyspark.sql import functions as F
#function to calculate number of seconds from number of days
days = lambda i: i * 86400
df = spark.createDataFrame([(17, "2017-03-10T15:27:18+00:00", "orange"),
                    (13, "2017-03-15T12:27:18+00:00", "red"),
                    (25, "2017-03-18T11:27:18+00:00", "red")],
                    ["dollars", "timestampGMT", "color"])
                    
df = df.withColumn('timestampGMT', df.timestampGMT.cast('timestamp'))
#create window by casting timestamp to long (number of seconds)
w = (Window.orderBy(F.col("timestampGMT").cast('long')).rangeBetween(-days(7), 0))
df = df.withColumn('distinct_color_count_over_the_last_week', F.countDistinct("color").over(w))
df.show()
This is the output I'd like to see:
+-------+--------------------+------+---------------------------------------+
|dollars|        timestampGMT| color|distinct_color_count_over_the_last_week|
+-------+--------------------+------+---------------------------------------+
|     17|2017-03-10 15:27:...|orange|                                      1|
|     13|2017-03-15 12:27:...|   red|                                      2|
|     25|2017-03-18 11:27:...|   red|                                      1|
+-------+--------------------+------+---------------------------------------+
 
     
     
    