I have data like this :
                      end station name   User Type
0                   Carmine St & 6 Ave  Subscriber
1           South End Ave & Liberty St  Subscriber
2        Christopher St & Greenwich St  Subscriber
3             Lafayette St & Jersey St  Subscriber
4                     W 52 St & 11 Ave  Subscriber
5              E 53 St & Lexington Ave  Subscriber
6                      W 17 St & 8 Ave  Subscriber
7                  St Marks Pl & 2 Ave  Subscriber
8        Washington St & Gansevoort St    Customer
9               Barclay St & Church St  Subscriber
10       Washington St & Gansevoort St    Customer
11             E 37 St & Lexington Ave  Subscriber
12                     E 51 St & 1 Ave  Subscriber
13                     W 33 St & 7 Ave  Subscriber
14                 Pike St & Monroe St  Subscriber
15                E 24 St & Park Ave S  Subscriber
16                     1 Ave & E 15 St  Subscriber
17                  Broadway & W 32 St    Customer
18                     E 39 St & 3 Ave    Customer
19                    W 59 St & 10 Ave  Subscriber
20             Centre St & Chambers St  Subscriber
21                     9 Ave & W 45 St    Customer
22                     8 Ave & W 33 St  Subscriber
23             Suffolk St & Stanton St  Subscriber
24                    W 47 St & 10 Ave  Subscriber
25                     W 33 St & 7 Ave  Subscriber
26                     8 Ave & W 33 St  Subscriber
27                     1 Ave & E 15 St    Customer
28                     8 Ave & W 33 St  Subscriber
29                     W 33 St & 7 Ave  Subscriber
...                                ...         ...
I want to find five(5) most popular stations for Customers in descending order of popularity
Here is my code:
import pandas as pd
rides = pd.read_csv(csv_file_path, low_memory=False, parse_dates=True)
five_popular_station_end_trip = rides['end station name'].value_counts().head()
I can find most popular stations from one column but I have no idea about how to find it based on another column.
 
     
    