You could use a hack from @g-grothendieck in this question :
http://stackoverflow.com/questions/1826519/how-to-assign-from-a-function-which-returns-more-than-one-value
and do this:
list[df1, df2] <- lapply(list(df1, df2), function(df) {
          df$col1 <- df$col1 + 1
          return(df)
        })
the hack
list <- structure(NA,class="result")
"[<-.result" <- function(x,...,value) {
  args <- as.list(match.call())
  args <- args[-c(1:2,length(args))]
  length(value) <- length(args)
  for(i in seq(along=args)) {
    a <- args[[i]]
    if(!missing(a)) eval.parent(substitute(a <- v,list(a=a,v=value[[i]])))
  }
  x
}
full code and results
df1 <- data.frame(col1 = rnorm(5), col2 = rnorm(5))
# col1       col2
# 1 -0.5451934  0.5043287
# 2 -1.4047701 -0.1184588
# 3  0.1745109  0.8279085
# 4 -0.5066673 -0.3269411
# 5  0.4838625 -0.3895784
df2 <- data.frame(col1 = rnorm(5), col2 = rnorm(5))
# col1        col2
# 1  0.4168078 -0.44654445
# 2 -1.9991098 -0.06179699
# 3 -1.0625996  1.21098946
# 4  0.4977718  0.45834008
# 5 -1.6181048  0.97917877
list[df1, df2] <- lapply(list(df1, df2), function(df) {
  df$col1 <- df$col1 + 1
  return(df)
})
# > df1
# col1       col2
# 1  0.4548066  0.5043287
# 2 -0.4047701 -0.1184588
# 3  1.1745109  0.8279085
# 4  0.4933327 -0.3269411
# 5  1.4838625 -0.3895784
# > df2
# col1        col2
# 1  1.41680778 -0.44654445
# 2 -0.99910976 -0.06179699
# 3 -0.06259959  1.21098946
# 4  1.49777179  0.45834008
# 5 -0.61810483  0.97917877