I'm training an LSTM model using as input a sequence of 50 steps of 3 different features laid out as below:
#x_train
[[[a0,b0,c0],.....[a49,b49,c49]],
  [a1,b1,c1]......[a50,b50,c50]],
  ...
  [a49,b49,c49]...[a99,b99,c99]]]
Using the following dependent variable
#y_train
[a50, a51, a52, ... a99]
The code below works to predict just a, how do I get it to predict and return a vector of [a,b,c] at a given timestep?
def build_model():
model = Sequential()
model.add(LSTM(
    input_shape=(50,3),
    return_sequences=True, units=50))
model.add(Dropout(0.2))
model.add(LSTM(
    250,
    return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(1))
model.add(Activation("linear"))
model.compile(loss="mse", optimizer="rmsprop")
return model
 
    