Vectorize this with NumPy to avoid the need to loop:
import numpy as np
def gaussian(x, m, s):
    fx = (1/((np.sqrt(2*np.pi))*s)*np.exp(-0.5*(((x - m)/s))**2))
    return fx
m=0; s=1    
x = np.linspace(m-5*s, m+5*s, num=100)
print(gaussian(x))
[  1.48671951e-06   2.45106104e-06   3.99989037e-06   6.46116639e-06
   1.03310066e-05   1.63509589e-05   2.56160812e-05   3.97238224e-05
   6.09759040e-05   9.26476353e-05   1.39341123e-04   2.07440309e-04
   3.05686225e-04   4.45889725e-04   6.43795498e-04   9.20104770e-04
   1.30165384e-03   1.82273110e-03   2.52649578e-03   3.46643792e-03
   4.70779076e-03   6.32877643e-03   8.42153448e-03   1.10925548e-02
   1.44624148e-02   1.86646099e-02   2.38432745e-02   3.01496139e-02
   3.77369231e-02   4.67541424e-02   5.73380051e-02   6.96039584e-02
   8.36361772e-02   9.94771388e-02   1.17117360e-01   1.36486009e-01
   1.57443188e-01   1.79774665e-01   2.03189836e-01   2.27323506e-01
   2.51741947e-01   2.75953371e-01   2.99422683e-01   3.21590023e-01
   3.41892294e-01   3.59786558e-01   3.74773979e-01   3.86422853e-01
   3.94389234e-01   3.98433802e-01   3.98433802e-01   3.94389234e-01
   3.86422853e-01   3.74773979e-01   3.59786558e-01   3.41892294e-01
   3.21590023e-01   2.99422683e-01   2.75953371e-01   2.51741947e-01
   2.27323506e-01   2.03189836e-01   1.79774665e-01   1.57443188e-01
   1.36486009e-01   1.17117360e-01   9.94771388e-02   8.36361772e-02
   6.96039584e-02   5.73380051e-02   4.67541424e-02   3.77369231e-02
   3.01496139e-02   2.38432745e-02   1.86646099e-02   1.44624148e-02
   1.10925548e-02   8.42153448e-03   6.32877643e-03   4.70779076e-03
   3.46643792e-03   2.52649578e-03   1.82273110e-03   1.30165384e-03
   9.20104770e-04   6.43795498e-04   4.45889725e-04   3.05686225e-04
   2.07440309e-04   1.39341123e-04   9.26476353e-05   6.09759040e-05
   3.97238224e-05   2.56160812e-05   1.63509589e-05   1.03310066e-05
   6.46116639e-06   3.99989037e-06   2.45106104e-06   1.48671951e-06]
For a table:
import pandas as pd
pd.DataFrame({'x' : x, 'gauss' : gaussian(x)})
As for your comment:
my tutor said its a better idea to define x outside the function. If s
  and m only exist inside the function, how can I reach them -- or
  should I go about this in another way?
This depends mainly on whether you want x to be a function of m and s.  If that's always the case, then it is x that you should incorporate into your function (defining x locally in the function body):
def gaussian(m, s, num):
    x = np.linspace(m-5*s, m+5*s, num=num)
    fx = (1/((np.sqrt(2*np.pi))*s)*np.exp(-0.5*(((x - m)/s))**2))
    return fx
Either way there is no need to deal with global here and that's something you should probably avoid unless you have a very good reason for it.
The way things are set up in my first definition of gaussian above, you are treating x, m, and s as independent variables.  That is, you could specify some other x that doesn't depend on m or s.  If you want x to always be a function of m and s, then incorporate that directly into your function to avoid having to specify it outside of the function.