I have this C++ function, which I can call from Python with the code below. The performance is only half compared to running pure C++. Is there a way to get their performance at the same level? I compile both codes with -Ofast -march=native flags. I do not understand where I can lose 50%, because most of the time should be spent in the C++ kernel. Is Cython making a memory copy that I can avoid?
namespace diff
{
    void diff_cpp(double* __restrict__ at, const double* __restrict__ a, const double visc,
                  const double dxidxi, const double dyidyi, const double dzidzi,
                  const int itot, const int jtot, const int ktot)
    {
        const int ii = 1;
        const int jj = itot;
        const int kk = itot*jtot;
        for (int k=1; k<ktot-1; k++)
            for (int j=1; j<jtot-1; j++)
                for (int i=1; i<itot-1; i++)
                {
                    const int ijk = i + j*jj + k*kk;
                    at[ijk] += visc * (
                            + ( (a[ijk+ii] - a[ijk   ]) 
                              - (a[ijk   ] - a[ijk-ii]) ) * dxidxi 
                            + ( (a[ijk+jj] - a[ijk   ]) 
                              - (a[ijk   ] - a[ijk-jj]) ) * dyidyi
                            + ( (a[ijk+kk] - a[ijk   ]) 
                              - (a[ijk   ] - a[ijk-kk]) ) * dzidzi
                            );
                }
    }
}
I have this .pyx file
# import both numpy and the Cython declarations for numpy
import cython
import numpy as np
cimport numpy as np
# declare the interface to the C code
cdef extern from "diff_cpp.cpp" namespace "diff":
    void diff_cpp(double* at, double* a, double visc, double dxidxi, double dyidyi, double dzidzi, int itot, int jtot, int ktot)
@cython.boundscheck(False)
@cython.wraparound(False)
def diff(np.ndarray[double, ndim=3, mode="c"] at not None,
         np.ndarray[double, ndim=3, mode="c"] a not None,
         double visc, double dxidxi, double dyidyi, double dzidzi):
    cdef int ktot, jtot, itot
    ktot, jtot, itot = at.shape[0], at.shape[1], at.shape[2]
    diff_cpp(&at[0,0,0], &a[0,0,0], visc, dxidxi, dyidyi, dzidzi, itot, jtot, ktot)
    return None
I call this function in Python
import numpy as np
import diff
import time
nloop = 20;
itot = 256;
jtot = 256;
ktot = 256;
ncells = itot*jtot*ktot;
at = np.zeros((ktot, jtot, itot))
index = np.arange(ncells)
a = (index/(index+1))**2
a.shape = (ktot, jtot, itot)
# Check results
diff.diff(at, a, 0.1, 0.1, 0.1, 0.1)
print("at={0}".format(at.flatten()[itot*jtot+itot+itot//2]))
# Time the loop
start = time.perf_counter()
for i in range(nloop):
    diff.diff(at, a, 0.1, 0.1, 0.1, 0.1)
end = time.perf_counter()
print("Time/iter: {0} s ({1} iters)".format((end-start)/nloop, nloop))
This is the setup.py:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [Extension("diff",
                             sources=["diff.pyx"],
                             language="c++",
                             extra_compile_args=["-Ofast -march=native"],
                             include_dirs=[numpy.get_include()])],
)
And here the C++ reference file that reaches twice the performance:
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <stdlib.h>
#include <cstdio>
#include <ctime>
#include "math.h"
void init(double* const __restrict__ a, double* const __restrict__ at, const int ncells)
{
    for (int i=0; i<ncells; ++i)
    {
        a[i]  = pow(i,2)/pow(i+1,2);
        at[i] = 0.;
    }
}
void diff(double* const __restrict__ at, const double* const __restrict__ a, const double visc, 
          const double dxidxi, const double dyidyi, const double dzidzi, 
          const int itot, const int jtot, const int ktot)
{
    const int ii = 1;
    const int jj = itot;
    const int kk = itot*jtot;
    for (int k=1; k<ktot-1; k++)
        for (int j=1; j<jtot-1; j++)
            for (int i=1; i<itot-1; i++)
            {
                const int ijk = i + j*jj + k*kk;
                at[ijk] += visc * (
                        + ( (a[ijk+ii] - a[ijk   ]) 
                          - (a[ijk   ] - a[ijk-ii]) ) * dxidxi 
                        + ( (a[ijk+jj] - a[ijk   ]) 
                          - (a[ijk   ] - a[ijk-jj]) ) * dyidyi
                        + ( (a[ijk+kk] - a[ijk   ]) 
                          - (a[ijk   ] - a[ijk-kk]) ) * dzidzi
                        );
            }
}
int main()
{
    const int nloop = 20;
    const int itot = 256;
    const int jtot = 256;
    const int ktot = 256;
    const int ncells = itot*jtot*ktot;
    double *a  = new double[ncells];
    double *at = new double[ncells];
    init(a, at, ncells);
    // Check results
    diff(at, a, 0.1, 0.1, 0.1, 0.1, itot, jtot, ktot); 
    printf("at=%.20f\n",at[itot*jtot+itot+itot/2]);
    // Time performance 
    std::clock_t start = std::clock(); 
    for (int i=0; i<nloop; ++i)
        diff(at, a, 0.1, 0.1, 0.1, 0.1, itot, jtot, ktot); 
    double duration = (std::clock() - start ) / (double)CLOCKS_PER_SEC;
    printf("time/iter = %f s (%i iters)\n",duration/(double)nloop, nloop);
    return 0;
}
 
    