A            B            C               D              E
0   165349.20   136897.80    471784.10        New York      192261.83
1   162597.70   151377.59    443898.53        California    191792.06
2   153441.51   101145.55    407934.54        Florida       191050.39
3   144372.41   118671.85    383199.62        New York      182901.99
4   142107.34   91391.77     366168.42        Florida       166187.94
after using df = pd.get_dummies(df, columns=['D'])
        A            B              C           E      D_New York    D_California     D_Florida
0   165349.20    136897.80      471784.10   192261.83      0             0                1
1   162597.70    151377.59      443898.53   191792.06      1             0                0
2   153441.51    101145.55      407934.54   191050.39      0             1                0
3   144372.41    118671.85      383199.62   182901.99      0             0                1
4   142107.34    91391.77       366168.42   166187.94      0             1                0
is there a way where the output looks like this to without using df[['A','B','C','D_Califorina','D_New York','D_Florida','E']]?
        A            B          C      D_New York    D_California     D_Florida     E
0   165349.20   136897.80   471784.10       0               0          1    192261.83
1   162597.70   151377.59   443898.53       1               0          0    191792.06
2   153441.51   101145.55   407934.54       0               1          0    191050.39
3   144372.41   118671.85   383199.62       0               0          1    182901.99
4   142107.34   91391.77    366168.42       0               1          0    166187.94
 
     
     
    