I search for a generic data frame update function like the sql-update that updates values in the first data frame in case the keys match with the keys in the second data frame. Is there a more generic way as in my example, maybe also by considering the value names? Something like a generic dplyr::update(df1, df2, by = "key") function?
library(tidyverse)
# example data frame
df1 <- as_data_frame(list(key = c(1,2,3,4,5,6,7,8,9),
                          v1 = c(11,12,13,14,15,16,17,18,19),
                          v2 = c(21,22,23,24,25,26,27,28,29),
                          v3 = c(31,32,33,34,35,36,37,38,39),
                          v4 = c(41,42,43,44,45,46,47,48,49)))
df2 <- as_data_frame(list(key = c(3,5,9),
                          v2 = c(231,252,293),
                          v4 = c(424,455,496)))
# update df1 with values from df2 where key match
org_names <- df1 %>% names()
df1 <- df1 %>% 
  left_join(df2, by = "key") %>% 
  mutate(v2 = ifelse(is.na(v2.y), v2.x, v2.y),
         v4 = ifelse(is.na(v4.y), v4.x, v4.y)) %>% 
  select(org_names)
> df1
# A tibble: 9 x 5
key    v1    v2    v3    v4
<dbl> <dbl> <dbl> <dbl> <dbl>
1     1    11    21    31    41
2     2    12    22    32    42
3     3    13   231    33   424
4     4    14    24    34    44
5     5    15   252    35   455
6     6    16    26    36    46
7     7    17    27    37    47
8     8    18    28    38    48
9     9    19   293    39   496
>