I have the following data frame and want to:
- Group records by month
- Sum QTY_SOLDandNET_AMTof each uniqueUPC_ID(per month)
- Include the rest of the columns as well in the resulting dataframe
The way I thought I can do this is 1st: create a month column to aggregate the D_DATES, then sum QTY_SOLD by UPC_ID. 
Script:
# Convert date to date time object
df['D_DATE'] = pd.to_datetime(df['D_DATE'])
# Create aggregated months column
df['month'] = df['D_DATE'].apply(dt.date.strftime, args=('%Y.%m',))
# Group by month and sum up quantity sold by UPC_ID
df = df.groupby(['month', 'UPC_ID'])['QTY_SOLD'].sum()
Current data frame:
UPC_ID | UPC_DSC | D_DATE | QTY_SOLD | NET_AMT
----------------------------------------------
111      desc1    2/26/2017   2         10 (2 x $5)
222      desc2    2/26/2017   3         15
333      desc3    2/26/2017   1         4
111      desc1    3/1/2017    1         5
111      desc1    3/3/2017    4         20
Desired Output:
MONTH | UPC_ID | QTY_SOLD | NET_AMT | UPC_DSC
----------------------------------------------
2017-2      111     2         10       etc...
2017-2      222     3         15
2017-2      333     1         4
2017-3      111     5         25
Actual Output:
MONTH | UPC_ID  
----------------------------------------------
2017-2      111     2
            222     3
            333     1
2017-3      111     5
...  
Questions:
- How do I include the month for each row?
- How do I include the rest of the columns of the dataframe?
- How do also sum NET_AMTin addition toQTY_SOLD?
 
     
     
    