I have a similar problem as described here, but none of the solutions from there which I have tried work.
Given a table like this:
Date    Exercise    Category    Weight  Reps    EstMax  RepxWeight  Note
4/2/16  Deadlift    Legs    135 7   166.4685    7x135   easy
4/2/16  Deadlift    Legs    135 7   166.4685    7x135   kinda easy
4/2/16  Deadlift    Legs    135 7   166.4685    7x135   tired
4/2/16  Bench Press Chest   95  5   110.8175    5x95    hard
4/2/16  Bench Press Chest   135 2   143.991 2x135   not hard
4/9/16  Bench Press Chest   135 2   143.991 2x135   a little hard
4/9/16  Bench Press Chest   135 2   143.991 2x135   super tired
4/18/16 Deadlift    Legs    155 8   196.292 8x155   …
4/18/16 Deadlift    Legs    155 5   180.8075    5x155   bad day
5/8/16  Deadlift    Legs    185 3   203.4815    3x185   good day
5/8/16  Deadlift    Legs    185 3   203.4815    3x185   felt easy
5/8/16  Bench Press Chest   115 4   130.318 4x115   easy
5/8/16  Bench Press Chest   115 4   130.318 4x115   hard
I want to aggregate to get the rows that have the max value for a certain column (e.g. EstMax) based on multiple other columns (e.g. Date and Exercise), but also keep all the other columns in the row. And in the case of multiple entries with the same max value, take the first entry.
The expected output would look like this:
Date    Exercise    Category    Weight  Reps    EstMax  RepxWeight  Note
4/2/16  Deadlift    Legs    135 7   166.4685    7x135   easy
4/2/16  Bench Press Chest   135 2   143.991 2x135   not hard
4/9/16  Bench Press Chest   135 2   143.991 2x135   a little hard
4/18/16 Deadlift    Legs    155 8   196.292 8x155   …
5/8/16  Deadlift    Legs    185 3   203.4815    3x185   good day
5/8/16  Bench Press Chest   115 4   130.318 4x115   hard
Examples of some method I've tried; in every case, the 'extra columns' end up being used as factors for the aggregation, which is not what I want.
data <- structure(list(Date = structure(c(2L, 2L, 2L, 2L, 2L, 3L, 3L, 
1L, 1L, 4L, 4L, 4L, 4L), .Label = c("4/18/16", "4/2/16", "4/9/16", 
"5/8/16"), class = "factor"), Exercise = structure(c(2L, 2L, 
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L), .Label = c("Bench Press", 
"Deadlift"), class = "factor"), Category = structure(c(2L, 2L, 
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L), .Label = c("Chest", 
"Legs"), class = "factor"), Weight = c(135L, 135L, 135L, 95L, 
135L, 135L, 135L, 155L, 155L, 185L, 185L, 115L, 115L), Reps = c(7L, 
7L, 7L, 5L, 2L, 2L, 2L, 8L, 5L, 3L, 3L, 4L, 4L), EstMax = c(166.4685, 
166.4685, 166.4685, 110.8175, 143.991, 143.991, 143.991, 196.292, 
180.8075, 203.4815, 203.4815, 130.318, 130.318), RepxWeight = structure(c(6L, 
6L, 6L, 5L, 1L, 1L, 1L, 7L, 4L, 2L, 2L, 3L, 3L), .Label = c("2x135", 
"3x185", "4x115", "5x155", "5x95", "7x135", "8x155"), class = "factor"), 
    Note = structure(c(4L, 8L, 11L, 7L, 9L, 2L, 10L, 1L, 3L, 
    6L, 5L, 4L, 7L), .Label = c("…", "a little hard", "bad day", 
    "easy", "felt easy", "good day", "hard", "kinda easy", "not hard", 
    "super tired", "tired"), class = "factor")), .Names = c("Date", 
"Exercise", "Category", "Weight", "Reps", "EstMax", "RepxWeight", 
"Note"), class = "data.frame", row.names = c(NA, -13L))
# base R
aggregate(EstMax ~ Date + Exercise, data = data, FUN = max)
# Date    Exercise   EstMax
# 1  4/2/16 Bench Press 143.9910
# 2  4/9/16 Bench Press 143.9910
# 3  5/8/16 Bench Press 130.3180
# 4 4/18/16    Deadlift 196.2920
# 5  4/2/16    Deadlift 166.4685
# 6  5/8/16    Deadlift 203.4815
aggregate(EstMax ~ Date + Exercise + RepxWeight + Note, data = data, FUN = max)
# Date    Exercise RepxWeight          Note   EstMax
# 1  4/18/16    Deadlift      8x155             … 196.2920
# 2   4/9/16 Bench Press      2x135 a little hard 143.9910
# 3  4/18/16    Deadlift      5x155       bad day 180.8075
# 4   5/8/16 Bench Press      4x115          easy 130.3180
# 5   4/2/16    Deadlift      7x135          easy 166.4685
# 6   5/8/16    Deadlift      3x185     felt easy 203.4815
# 7   5/8/16    Deadlift      3x185      good day 203.4815
# 8   5/8/16 Bench Press      4x115          hard 130.3180
# 9   4/2/16 Bench Press       5x95          hard 110.8175
# 10  4/2/16    Deadlift      7x135    kinda easy 166.4685
# 11  4/2/16 Bench Press      2x135      not hard 143.9910
# 12  4/9/16 Bench Press      2x135   super tired 143.9910
# 13  4/2/16    Deadlift      7x135         tired 166.4685
# data table
library("data.table")
data_dt <- data.table(data)
data_dt[ , max(EstMax), by = c("Date", "Exercise")]
# Date    Exercise       V1
# 1:  4/2/16    Deadlift 166.4685
# 2:  4/2/16 Bench Press 143.9910
# 3:  4/9/16 Bench Press 143.9910
# 4: 4/18/16    Deadlift 196.2920
# 5:  5/8/16    Deadlift 203.4815
# 6:  5/8/16 Bench Press 130.3180
data_dt[, max(EstMax), .(Date, Exercise, Weight, Reps, RepxWeight, Note)]
# Date    Exercise Weight Reps RepxWeight          Note       V1
# 1:  4/2/16    Deadlift    135    7      7x135          easy 166.4685
# 2:  4/2/16    Deadlift    135    7      7x135    kinda easy 166.4685
# 3:  4/2/16    Deadlift    135    7      7x135         tired 166.4685
# 4:  4/2/16 Bench Press     95    5       5x95          hard 110.8175
# 5:  4/2/16 Bench Press    135    2      2x135      not hard 143.9910
# 6:  4/9/16 Bench Press    135    2      2x135 a little hard 143.9910
# 7:  4/9/16 Bench Press    135    2      2x135   super tired 143.9910
# 8: 4/18/16    Deadlift    155    8      8x155             … 196.2920
# 9: 4/18/16    Deadlift    155    5      5x155       bad day 180.8075
# 10:  5/8/16    Deadlift    185    3      3x185      good day 203.4815
# 11:  5/8/16    Deadlift    185    3      3x185     felt easy 203.4815
# 12:  5/8/16 Bench Press    115    4      4x115          easy 130.3180
# 13:  5/8/16 Bench Press    115    4      4x115          hard 130.3180
Especially prefer base R solutions. Also saw the which.max() function which might be helpful but couldn't figure out how to apply it to this.
Other related questions which I looked at but did not solve this:
Adding a non-aggregated column to an aggregated data set based on the aggregation of another column
Only keep min value for each factor level
How to select the row with the maximum value in each group
aggregating multiple columns in data.table
How to aggregate some columns while keeping other columns in R?
 
     
     
     
    