(I guess this question could apply to many typed languages, but I chose to use C++ as an example.)
Why is there no way to just write:
struct foo {
little int x; // little-endian
big long int y; // big-endian
short z; // native endianness
};
to specify the endianness for specific members, variables and parameters?
Comparison to signedness
I understand that the type of a variable not only determines how many bytes are used to store a value but also how those bytes are interpreted when performing computations.
For example, these two declarations each allocate one byte, and for both bytes, every possible 8-bit sequence is a valid value:
signed char s;
unsigned char u;
but the same binary sequence might be interpreted differently, e.g. 11111111 would mean -1 when assigned to s but 255 when assigned to u. When signed and unsigned variables are involved in the same computation, the compiler (mostly) takes care of proper conversions.
In my understanding, endianness is just a variation of the same principle: a different interpretation of a binary pattern based on compile-time information about the memory in which it will be stored.
It seems obvious to have that feature in a typed language that allows low-level programming. However, this is not a part of C, C++ or any other language I know, and I did not find any discussion about this online.
Update
I'll try to summarize some takeaways from the many comments that I got in the first hour after asking:
- signedness is strictly binary (either signed or unsigned) and will always be, in contrast to endianness, which also has two well-known variants (big and little), but also lesser-known variants such as mixed/middle endian. New variants might be invented in the future.
- endianness matters when accessing multiple-byte values byte-wise. There are many aspects beyond just endianness that affect the memory layout of multi-byte structures, so this kind of access is mostly discouraged.
- C++ aims to target an abstract machine and minimize the number of assumptions about the implementation. This abstract machine does not have any endianness.
Also, now I realize that signedness and endianness are not a perfect analogy, because:
- endianness only defines how something is represented as a binary sequence, but now what can be represented. Both
big intandlittle intwould have the exact same value range. - signedness defines how bits and actual values map to each other, but also affects what can be represented, e.g. -3 can't be represented by an
unsigned charand (assuming thatcharhas 8 bits) 130 can't be represented by asigned char.
So that changing the endianness of some variables would never change the behavior of the program (except for byte-wise access), whereas a change of signedness usually would.