Code acts as if z was a double and y/(float)100000.0 is y/100000.0.
float x = 1028.25478;
long int y = 102825478;
double z = y/100000.0;
// output
x = 1028.254761 z = 1028.254780
An important consideration is FLT_EVAL_METHOD. This allows select floating point code to evaluate at higher precision.
#include <float.h>
#include <stdio.h>
printf("FLT_EVAL_METHOD %d\n", FLT_EVAL_METHOD);
Except for assignment and cast ..., the values yielded by operators with floating operands and values subject to the usual arithmetic conversions and of floating constants are evaluated to a format whose range and precision may be greater than required by the type. The use of evaluation formats is characterized by the implementation-defined value of FLT_EVAL_METHOD.
-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the
type;
1 evaluate ... type float and double to the
range and precision of the double type, evaluate long double
... to the range and precision of the long double
type;
2 evaluate all ... to the range and precision of the
long double type.
Yet this does not apply as z with float z = y/(float)100000.0; should lose all higher precision on the assignment.
I agree with @Antti Haapala that code is using a speed optimization that has less adherence to the expected rules of floating point math.