I have the following dataset with 21 columns - 19 variables and Month and Date as date type columns.
The aim is to analyze how correlation change over time calculating a daily correlation between variables summarized in one month. For example, see this "monthly correlation" over time. (X-axis as month type)
+------------+---------+-----+-----+--------+---------+-------------+
| Date       | Month   | AOV | ASP | Clicks | Traffic | Impressions |
+------------+---------+-----+-----+--------+---------+-------------+
| 2017-01-01 | 2017-01 | 50  | 6   | 700    | 10000   | 4500        |
+------------+---------+-----+-----+--------+---------+-------------+
| 2017-01-02 | 2017-01 | 55  | 7   | 800    | 20000   | 4600        |
+------------+---------+-----+-----+--------+---------+-------------+
| 2017-02    | 2017-02 | 58  | 8   | 700    | 4599    | 2300        |
+------------+---------+-----+-----+--------+---------+-------------+
At the moment I have the following code but I only can compare two variables at the same time
ddply(corr,"Month",summarise,corr=cor(AOV,ASP))
I get the table below
+---------+------------+
| Month   | corr       |
+---------+------------+
| 2017-1  | 0.4958738  |
+---------+------------+
| 2017-10 | 0.8527522  |
+---------+------------+
| 2017-11 | -0.2751771 |
+---------+------------+
| 2017-12 | NA         |
+---------+------------+
| 2017-2  | 0.6596346  |
+---------+------------+
| 2017-3  | 0.6399969  |
+---------+------------+
| 2017-4  | 0.7926245  |
+---------+------------+
| 2017-5  | 0.6429613  |
+---------+------------+
| 2017-6  | 0.3824414  |
+---------+------------+
| 2017-7  | 0.9154873  |
+---------+------------+
| 2017-8  | 0.7235767  |
+---------+------------+
| 2017-9  | 0.8264006  |
+---------+------------+
I have been using combn to create the combinations set but I'm not quite sure how to use it with ddply. I get 171 combinations in pairs.
combn(corr,2,simplify = F)
 
    