Option 1
str.extractall - 
(df.set_index('Item').Origin
   .str.extractall(r'\b(?P<Origin>\w+)\b')
   .reset_index()
   .drop('match', 1))
      Item  Origin
0  Weapons      US
1  Weapons      UK
2  Weapons     AUS
3    Drugs      US
4     Data  Canada
The pattern extracts all words into a separate row - 
\b           # word boundary
(?P<Origin>  # named capture group called "Origin"
\w+          # any string of letters/digits (you can change this to [^\s]+ instead to match punctuation
)            # closing 1st capture group
\b           # word boundary
Note that you can squeeze out a bit more performance by removing the drop call and replacing it with a del call - 
i = (df.set_index('Item').Origin
       .str.extractall(r'\b(?P<Origin>\w+)\b')
       .reset_index())
del i['match']
Option 2
str.split + stack - 
(df.set_index('Item').Origin
  .str.split(expand=True)
  .stack()
  .reset_index(level=0, name='Origin'))
      Item  Origin
0  Weapons      US
1  Weapons      UK
2  Weapons     AUS
0    Drugs      US
0     Data  Canada
Performance
df = pd.concat([df] * 10000, ignore_index=True)
%%timeit 
(df.set_index('Item').Origin
   .str.extractall(r'\b(?P<Origin>\w+)\b')
   .reset_index()
   .drop('match', 1))
1 loop, best of 3: 226 ms per loop
%%timeit 
(df.set_index('Item').Origin
  .str.split(expand=True)
  .stack()
  .reset_index(level=0, name='Origin'))
10 loops, best of 3: 142 ms per loop
Note that performance on your actual data might differ based on the nature of your data, etc.