I am currently attempting to run an object detector called YOLO (darkflow).
I have installed CUDA 8.0, CudNN 5.1, tensorflow 1.0 and tensorflow-gpu (both installed via pip).
I'm testing YOLO by using the following command line:
sudo python3 ./flow --model cfg/yolo.cfg --load yolo.weights --demo dji_0004.MP4 --gpu 1.0
The problem is: even using --gpu 1.0 it runs at ~0.8 FPS.
While running it, I used nvidia-smi to monitor my GPU and this is what I get:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.82                 Driver Version: 375.82                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 650     Off  | 0000:01:00.0     N/A |                  N/A |
| 16%   40C    P0    N/A /  N/A |    444MiB /   980MiB |     N/A      Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0                  Not Supported                                         |
+-----------------------------------------------------------------------------+
Apparently tensorflow isn't using running it on my GPU.
GTX 650 has 3.0 compute capability according to NVIDIA, so using tensorflow-gpu should be no problem.