I am currently reading the "Hands-On Machine Learning with Scikit-Learn & TensorFlow". I get an error when I am trying to recreate the Transformation Pipelines code. How can I fix this?
Code:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([('imputer', Imputer(strategy = "median")),
                        ('attribs_adder', CombinedAttributesAdder()),
                        ('std_scaler', StandardScaler()),
                        ])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
                         ('selector', DataFrameSelector(num_attribs)),
                         ('imputer', Imputer(strategy = "median")),
                         ('attribs_adder', CombinedAttributesAdder()),
                         ('std_scaler', StandardScaler()),
                        ])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)), 
                         ('label_binarizer', LabelBinarizer()),
                        ])
full_pipeline = FeatureUnion(transformer_list = [("num_pipeline", num_pipeline), 
                                                 ("cat_pipeline", cat_pipeline),
                                                ])
# And we can now run the whole pipeline simply:
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
Error:
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-350-3a4a39e5bc1c> in <module>()
     43 
     44 num_pipeline = Pipeline([
---> 45                          ('selector', DataFrameSelector(num_attribs)),
     46                          ('imputer', Imputer(strategy = "median")),
     47                          ('attribs_adder', CombinedAttributesAdder()),
NameError: name 'DataFrameSelector' is not defined