My aim is to fill missing values by group by rolling forward.
Dummy data
library(data.table)
DT <- structure(list(CLASS = c("A", "A", "A", "A", "A", "A", "B", "B","B"),
VAL = c(NA, 1, NA, NA, 2, NA, 50, NA, 100)),
.Names = c("CLASS", "VAL"),
row.names = c(NA, -9L), class = c("data.table", "data.frame"))
> DT
   CLASS VAL
1:     A  NA
2:     A   1
3:     A  NA
4:     A  NA
5:     A   2
6:     A  NA
7:     B  50
8:     B  NA
9:     B 100
Desired result
   CLASS VAL
1:     A  NA
2:     A   1
3:     A   1
4:     A   1
5:     A   2
6:     A   2
7:     B  50
8:     B  50
9:     B 100
Note, the results from here are not applicable.
1) This assigns first non-missing value to every observation in a group
#1
DT[, VAL:= VAL[!is.na(VAL)][1L] , by = CLASS]
> DT
   CLASS VAL
1:     A   1
2:     A   1
3:     A   1
4:     A   1
5:     A   1
6:     A   1
7:     B  50
8:     B  50
9:     B  50
2) If rows to be assigned are filtered to missing values only in i, it fails to pick up any non-NA values when grouping in by. So nothing is changed in the result.
> DT[is.na(VAL), VAL:= VAL[!is.na(VAL)][1L] , by = CLASS]
> DT
   CLASS VAL
1:     A  NA
2:     A   1
3:     A  NA
4:     A  NA
5:     A   2
6:     A  NA
7:     B  50
8:     B  NA
9:     B 100
9:     B  50
3) The solution using fill() from tidyr works, but unfortunately using the real data with 3.5 million rows rows and 2 million groups; the running time is ~6 hrs. So I am looking for a more efficient data.table solution.
> DT <- DT %>% group_by(CLASS) %>% fill(VAL)
> DT
# A tibble: 9 x 2
# Groups:   CLASS [2]
  CLASS    VAL
  <chr>  <dbl>
1 A      NA   
2 A       1.00
3 A       1.00
4 A       1.00
5 A       2.00
6 A       2.00
7 B      50.0 
8 B      50.0 
9 B     100  
 
    