Your code sample leaves me a little confused, but focusing on 
I want to make the same changes to all of the data frames.
and
How do I, in general, access df_1 using an iterator?
you can do exactly that by organizing your dataframes (dfs) in a dictionary (dict).
Here's how:
Assuming you've got a bunch of variables in your namespace... 
# Imports
import pandas as pd
import numpy as np
# A few dataframes with random numbers
# df_1
np.random.seed(123)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_1 = pd.DataFrame(np.random.randint(100,150,size=(rows, 2)), columns=['a', 'b']) 
df_1 = df_1.set_index(rng)
# df_2
np.random.seed(456)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_2 = pd.DataFrame(np.random.randint(100,150,size=(rows, 2)), columns=['c', 'd']) 
df_2 = df_2.set_index(rng)
# df_3
np.random.seed(789)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_3 = pd.DataFrame(np.random.randint(100,150,size=(rows, 2)), columns=['e', 'f']) 
df_3 = df_3.set_index(rng)
...you can identify all that are dataframes using:
alldfs = [var for var in dir() if isinstance(eval(var), pd.core.frame.DataFrame)]
If you've got a lot of different dataframes but would only like to focus on those that have a prefix like 'df_', you can identify those by...
dfNames = []
for elem in alldfs:
   if str(elem)[:3] == 'df_':
       dfNames.append(elem)
... and then organize them in a dict using:
myFrames = {}
for dfName in dfNames:
    myFrames[dfName] = eval(dfName)
From that list of interesting dataframes, you can subset those that you'd like to do something with. Here's how you focus only on df_1 and df_2:
invalid = ['df_3']
for inv in invalid:
    myFrames.pop(inv, None)
Now you can reference ALL your valid dfs by looping through them:
for key in myFrames.keys():
    print(myFrames[key])
And that should cover the...
How do I, in general, access df_1 using an iterator?
...part of the question.
And you can of course reference a single dataframe by its name / key in the dict:
print(myFrames['df_1'])
From here you can do something with ALL columns in ALL dataframes.
for key in myFrames.keys():
    myFrames[key] = myFrames[key]*10
    print(myFrames[key])
Or, being a bit more pythonic, you can specify a lambda function and apply that to a subset of columns
# A function
decimator = lambda x: x/10
# A subset of columns:
myCols = ['SPEED1', 'SPEED2']
Apply that function to your subset of columns in your dataframes of interest:
for key in myFrames.keys():
    for col in list(myFrames[key]):
        if col in myCols:
            myFrames[key][col] = myFrames[key][col].apply(decimator)
            print(myFrames[key][col])
So, back to your function...
modify(df_1,1)
... here's my take on it wrapped in a function.
First we'll redefine the dataframes and the function.
Oh, and with this setup, you're going to have to obtain all dfs OUTSIDE your function with alldfs = [var for var in dir() if isinstance(eval(var), pd.core.frame.DataFrame)].
Here's the datasets and the function for an easy copy-paste:
# Imports
import pandas as pd
import numpy as np
# A few dataframes with random numbers
# df_1
np.random.seed(123)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_1 = pd.DataFrame(np.random.randint(100,150,size=(rows, 3)), columns=['SPEED1', 'SPEED2', 'SPEED3']) 
df_1 = df_1.set_index(rng)
# df_2
np.random.seed(456)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_2 = pd.DataFrame(np.random.randint(100,150,size=(rows, 3)), columns=['SPEED1', 'SPEED2', 'SPEED3']) 
df_2 = df_2.set_index(rng)
# df_3
np.random.seed(789)
rows = 12
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_3 = pd.DataFrame(np.random.randint(100,150,size=(rows, 3)), columns=['SPEED1', 'SPEED2', 'SPEED3']) 
df_3 = df_3.set_index(rng)
# A function that divides columns by 10
decimator = lambda x: x/10
# A reference to all available dataframes
alldfs = [var for var in dir() if isinstance(eval(var), pd.core.frame.DataFrame)]
# A function as per your request
def modify(dfs, cols, fx):
    """ Define a subset of available dataframes and list of interesting columns, and
        apply a function on those columns.
    """
    # Subset all dataframes with names that start with df_
    dfNames = []
    for elem in alldfs:
       if str(elem)[:3] == 'df_':
           dfNames.append(elem)
    # Organize those dfs in a dict if they match the dataframe names of interest
    myFrames = {}
    for dfName in dfNames:
        if dfName in dfs:    
            myFrames[dfName] = eval(dfName)
            print(myFrames)
    # Apply fx to the cols of your dfs subset
    for key in myFrames.keys():
        for col in list(myFrames[key]):
            if col in cols:
                myFrames[key][col] = myFrames[key][col].apply(decimator)
# A testrun. Results in screenshots below
modify(dfs = ['df_1', 'df_2'], cols = ['SPEED1', 'SPEED2'], fx = decimator)
Here are dataframes df_1 and df_2 before manipulation:

Here are the dataframes after manipulation:

Anyway, this is how I would approach it.
Hope you'll find it useful!