I get this error when I run my code:
Warning: Error in : `.x` is not a vector (closure)
Stack trace (innermost first):
    41: map
    40: map_df
    39: as_data_frame
    38: tbl_df
    37: server [C:\Users\Jasmeet\Documents/app.R#106]
     1: runApp
Error : `.x` is not a vector (closure)
I am not able to extract tweets based on data entered by a user in a textbox. There is probably an error in the functioning of the reactive objects where a user selects the number of tweets to be considered and the twitter account of which it wants the analysis to be done.
  library(shiny)
ui <- fluidPage(
  headerPanel("Twitter Sentiment Analysis"),
  sidebarPanel(
    textInput("searchTerm", "Enter data to be searched with '@'", "@"),
    sliderInput("maxTweets","Number of recent tweets to use for analysis:",min=5,max=1000,value=500), 
    submitButton(text="Analyse")
  ),
  mainPanel(
    tabsetPanel(
      tabPanel("Histogram",HTML
               ("<div><h3> Histograms graphically depict the positivity or negativity of peoples' opinion about of the hashtag
                 </h3></div>"),plotOutput("histScore")
               )
      )
  )
)
server <- function(input, output) {
  library(twitteR)
  library(purrr)
  library(dplyr)
  require('ROAuth')
  require('RCurl')
  library(plyr)
  library(stringr)
  library(reprex)
  #word database
  pos.words = scan('C:/Users/Jasmeet/Desktop/R/poswords/positive-words.txt',what = 'character',comment.char = ';')
  neg.words = scan('C:/Users/Jasmeet/Desktop/R/negwords/negative-words.txt',what = 'character',comment.char = ';')     
  ##NEW
  score.sentiment <- function(sentences, pos.words, neg.words, .progress='none')
  {
    require(plyr)
    require(stringr)
    scores <- laply(sentences, function(sentence, pos.words, neg.words){
      sentence <- gsub('[[:punct:]]', "", sentence)
      sentence <- gsub('[[:cntrl:]]', "", sentence)
      sentence <- gsub('\\d+', "", sentence)
      sentence <- tolower(sentence)
      word.list <- strsplit(sentence, '\\s+')
      words <- unlist(word.list)
      pos.matches <- match(words, pos.words)
      neg.matches <- match(words, neg.words)
      pos.matches <- !is.na(pos.matches)
      neg.matches <- !is.na(neg.matches)
      score <- sum(pos.matches) - sum(neg.matches)
      return(score)
    }, pos.words, neg.words, .progress = .progress)
    scores.df <- data.frame(score=scores, text=sentences)
    return(scores.df)
  }
  consumerKey <- "xxx"
  reqURL <- "xxx"
  accessURL <- "xxx"
  authURL <-"xxx"
  consumerSecret <-"xxx"
  accessToken <- "xxx"
  accessTokenSecret <- "xxx"
  setup_twitter_oauth(consumerKey,consumerSecret,accessToken,accessTokenSecret)
enter code here
  #Extracting Tweets
  tweet1 <- reactive({ tweet1 = userTimeline(input$searchTerm, n=input$maxTweets) })
  #Converting to dataframe
  tweet_df <- tbl_df(map_df(tweet1, as.data.frame))
  bscore <- score.sentiment(tweet_df$text,pos.words,neg.words,.progress='text')
  ###histogram 
  output$histScore<- renderPlot({ hist(bscore$score, col=rainbow(10), main="Histogram of Positive Sentiment") }) 
}
shinyApp(ui = ui, server = server)
 
    