TL;DR: the argument of the lambda can be inserted at an unexpected position. Instead of taking
a foreach { println(_.blah) }
and building
a foreach { x => println(x.blah) }
out of it, the compiler instead builds
a foreach { println( x => x.blah ) }
and then fails to derive the type for the argument x.
A) This is the most explicit way to write down the lambda, the only way to make it clearer would be to add a type:
a foreach { perA => println(perA * 2) }
is the same as
a foreach { (x: Int) => println(x * 2) }
This should obviously work.
B) This works because it's one way to write down the function automatically generated from println. It is equivalent to any of the six variants below:
a foreach { (x: Int) => println(x) }
a foreach { x => println(x) }
a foreach { println(_) }
a foreach { println _ }
a foreach { println }
a foreach println
C) Because of the * 2, this here
a foreach { println(_ * 2) }
can no longer be considered just println(_). Instead, it is interpreted as
a foreach { println( { (x: ??!) => x * 2 } ) }
and since println takes no function-valued arguments, it cannot determine what the type of x is supposed to be, and exits with an error.
D) Is essentially the same as A, it works, I hope it's clear.
E) Is a variation of C, but this time, the type-checker isn't looking for something with method *(i: Int), but instead it's looking for something with a member para.
This here:
b foreach { println(_.para) }
is again interpreted as a foreach with a function which ignores elements of b and returns the constant value of the expression println(_.para),
that is:
b foreach { println( { (x: ??!) => x.para } ) }
Again, the inner expression println( { (x: ??!) => x.para } ) does not make any sense, because println does not expect function-valued arguments (it can handle Any, but it's not enough to derive the type of x).