I'm looking to check trends for a number of entities (SysNr)
I have data spanning 3 years (2014,2015,2016)
I'm looking at a large quantity of variables, but will limit this question to one ('res_f_r')
My DataFrame looks something like this
d = [
    {'RegnskabsAar': 2014, 'SysNr': 1, 'res_f_r': 350000},
    {'RegnskabsAar': 2015, 'SysNr': 1, 'res_f_r': 400000},
    {'RegnskabsAar': 2016, 'SysNr': 1, 'res_f_r': 450000},
    {'RegnskabsAar': 2014, 'SysNr': 2, 'res_f_r': 350000},
    {'RegnskabsAar': 2015, 'SysNr': 2, 'res_f_r': 300000},
    {'RegnskabsAar': 2016, 'SysNr': 2, 'res_f_r': 250000},
]
df = pd.DataFrame(d)
   RegnskabsAar  SysNr  res_f_r
0          2014      1   350000
1          2015      1   400000
2          2016      1   450000
3          2014      2   350000
4          2015      2   300000
5          2016      2   250000
My desire is to do a linear regression on each entity (SysNr) and get returned the slope and intercept
My desired output for the above is
   SysNr  intercept  slope
0      1     300000  50000
1      2     400000 -50000
Any ideas?
 
     
    