I have a dataframe which I am creating by reading an Excel file:
Project Release Name    Cycle Name  Cycle Start Date    Cycle End Date  Exec Date   Planned Exec Date   Available Test Cases    Planned Tested  Passed  Failed  Blocked No Run  Tester
B1  Y1  CM1 2/7/2018    2/20/2018   2/6/2018    2/6/2018    2   10  8   8   0   0   0   Tester3
B1  Y1  CM1 2/7/2018    2/20/2018   2/7/2018    2/7/2018    2   13  10  9   1   1   0   Tester3
B1  Y1  CM1 2/7/2018    2/20/2018   2/8/2018    2/8/2018    0   1   1   1   0   0   0   Tester3
B1  Y1  CM1 2/7/2018    2/20/2018   2/9/2018    2/9/2018    0   2   2   2   0   0   0   Tester3
B1  Y1  CM1 2/7/2018    2/20/2018   2/10/2018   2/10/2018   0   2   2   2   0   0   0   Tester3
B1  Y1  CL1 2/7/2018    2/25/2018   2/1/2018    2/1/2018    5   25  20  20  0   0   0   Tester 4
B1  Y1  CL1 2/7/2018    2/25/2018   2/2/2018    2/2/2018    10  30  20  18  2   0   0   Tester 4
B1  Y1  CL1 2/7/2018    2/25/2018   2/3/2018    2/3/2018    0   2   2   0   2   0   0   Tester 4
B1  Y1  CL1 1/17/2018   2/25/2018   2/4/2018    2/4/2018    0   3   3   1   2   0   0   Tester 4
B1  Y1  CL1 1/17/2018   2/25/2018   2/5/2018    2/5/2018    5   32  25  20  4   1   0   Tester 4
C1  Z1  CK1 1/10/2018   2/20/2018   2/3/2018    2/3/2018    0   1   1   0   1   0   0   Tester5
C1  Z1  CK1 1/10/2018   2/20/2018   2/4/2018    2/4/2018    0   1   1   0   1   0   0   Tester5
C1  Z1  CK1 1/10/2018   2/20/2018   2/5/2018    2/5/2018    0   1   1   0   1   0   0   Tester5
C1  Z1  CK1 1/10/2018   2/20/2018   2/6/2018    2/6/2018    0   1   1   1   0   0   0   Tester5
C1  Z1  CK1 1/10/2018   2/20/2018   2/7/2018    2/7/2018    0   1   1   1   0   0   0   Tester6
C1  Z1  CK1 1/10/2018   2/20/2018   2/8/2018    2/8/2018    0   1   1   1   0   0   0   Tester6
C1  Z1  CK2 1/17/2018   2/18/2018   2/6/2018    2/6/2018    0   1   1   1   0   0   0   Tester6
C1  Z1  CK2 1/17/2018   2/18/2018   2/7/2018    2/7/2018    0   2   2   0   2   0   0   Tester6
C1  Z1  CK2 1/17/2018   2/18/2018   2/8/2018    2/8/2018    0   2   2   0   2   0   0   Tester7
C1  Z1  CK2 1/17/2018   2/18/2018   2/9/2018    2/9/2018    0   2   2   0   2   0   0   Tester7
C1  Z1  CK2 1/17/2018   2/18/2018   2/10/2018   2/10/2018   0   2   2   1   1   0   0   Tester7
C1  Z1  CK2 1/17/2018   2/18/2018   2/11/2018   2/11/2018   0   2   2   2   0   0   0   Tester7
And I am using pandas groupby as follows:
dx1 = pd.read_excel('Trend.xlsx',sheetname='Execution by Date')
dx1 = dx1.groupby(['Project', 'Release Name', 'Cycle Name', 'Cycle Start Date',
       'Cycle End Date'])['Exec Date','Planned Exec Date', 'Available Test Cases', 'Planned', 'Tested', 'Passed', 'Failed',
       'Blocked'].sum().reset_index()
and here is the result I get:
Project Release Name    Cycle Name  Cycle Start Date    Cycle End Date  Available Test Cases    Planned Tested  Passed  Failed  Blocked
B1  Y1  CL1 2018-01-17 00:00:00 2018-02-25 00:00:00 5   35  28  21  6   1
B1  Y1  CL1 2018-02-07 00:00:00 2018-02-25 00:00:00 15  57  42  38  4   0
B1  Y1  CM1 2018-02-07 00:00:00 2018-02-20 00:00:00 4   28  23  22  1   1
C1  Z1  CK1 2018-01-10 00:00:00 2018-02-20 00:00:00 0   6   6   3   3   0
C1  Z1  CK2 2018-01-17 00:00:00 2018-02-18 00:00:00 0   11  11  4   7   0
As you can see that, 'Exec Date' and 'Planned Exec Date' are missing.
How can I bring both of the missing date columns back into the dataframe. I have tried all seemingly relevant solutions but none worked for me.
 
    