I have a df like this:
   num1    num2
0  [2.0]   10
1  [3.0]   20
2  [4.0]   30
3  [5.0]   40
4  [6.0]   50
5  [nan]   60 
6  [nan]   70
7  [10.0]  80
8  [nan]   90
9  [15.0]  100
num1 column contains arrays of floats. [nan] is a numpy array containing a single np.NaN.
I am converting this to integers via this:
df['num1'] = list(map(int, df['num1']))
If I just use this df:
   num1    num2
0  [2.0]   10
1  [3.0]   20
2  [4.0]   30
3  [5.0]   40
4  [6.0]   50
This works when there are no [nan] and I get:
   num1   num2
0  2.0  10
1  3.0  20
2  4.0  30
3  5.0  40
4  6.0  50
But if I include the full df with [nan] I get the error:
`ValueError: cannot convert float NaN to integer`
I tried doing:
df[df['num1'] != np.array(np.NaN)]
But this gave the error:
TypeError: len() of unsigned object  
How can I get the desired output:
   num1    num2
0  2.0   10
1  3.0   20
2  4.0   30
3  5.0   40
4  6.0   50
5  10.0  80
6  15.0  100
 
     
     
     
     
    