I'm using cython to wrap a c++ library. A data structure to be wrapped in c++ side is:
struct StructInts {
    int a;
    int b;
    int c;
};
typedef std::vector<StructInts> VectorTris;
I'm hope for using numpy.ndarray as an interface in cython side(because the data source is numpy.ndarray), with imagined functions like:
cdef numpy.ndarray _from_vector_tris(VectorTris vector_tris):
    ...
    return _a_ndarray
cdef VectorTris _to_vector_tris(numpy.ndarray data_source):
    ...
    return _a_vector_tris
I tried field by field copy from/to VectorTris(construct new numpy.ndarray or VectorTris and fill it) like this:
cdef numpy.ndarray _from_vector_tris(VectorTris vector_tris):
    cdef int dim0 = vector_tris.size() * 3
    cdef numpy.ndarray _a_ndarray = numpy.empty(dim0, dtype=int)
    for i in range(vector_tris.size()):
        _a_ndarray[i*3]     = vector_tris[i].a
        _a_ndarray[i*3 + 1] = vector_tris[i].b
        _a_ndarray[i*3 + 2] = vector_tris[i].c
    return _a_ndarray
cdef VectorTris _to_vector_tris(numpy.ndarray data_source):
    # construct each StructInts and init .a, .b, .c with corresponding 
    # items in data_source, and then push_back into _a_vector_tris
    # the procedure seems like _from_vector_tris() but reversed
    return _a_vector_tris
It works but with large data source, it's too slow
How to convert between these two data structures efficiently? Thanks !