I have defined an unsupervised problem in tensorflow, I need to update my B and my tfZ with every iteration, but I don't know how to update my tfZ using the tensorflow session.
tfY = tf.placeholder(shape=(15, 15), dtype=tf.float32)
with tf.variable_scope('test'):
    B = tf.Variable(tf.zeros([]))
    tfZ = tf.convert_to_tensor(Z, dtype=tf.float32)
def loss(tfY):
    r = tf.reduce_sum(tfZ*tfZ, 1)
    r = tf.reshape(r, [-1, 1])
    D = tf.sqrt(r - 2*tf.matmul(tfZ, tf.transpose(tfZ)) + tf.transpose(r) + 1e-9)
    return tf.reduce_sum(tfY*tf.log(tf.sigmoid(D+B))+(1-tfY)*tf.log(1-tf.sigmoid(D+B)))
LOSS = loss(Y)
GRADIENT = tf.gradients(LOSS, [B, tfZ])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tot_loss = sess.run(LOSS, feed_dict={tfY: Y})
loss_grad = sess.run(GRADIENT, feed_dict={tfY: Y})
learning_rate = 1e-4
for i in range(1000):
    sess.run(B.assign(B - learning_rate * loss_grad[0]))
    print(tfZ)
    sess.run(tfZ.assign(tfZ - learning_rate * loss_grad[1]))
    tot_loss = sess.run(LOSS, feed_dict={tfY: Y})
    if i%10==0:
        print(tot_loss)
This code prints the following:
Tensor("test_18/Const:0", shape=(15, 2), dtype=float32)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-35-74ddafc0bf3a> in <module>()
     25     sess.run(B.assign(B - learning_rate * loss_grad[0]))
     26     print(tfZ)
---> 27     sess.run(tfZ.assign(tfZ - learning_rate * loss_grad[1]))
     28 
     29     tot_loss = sess.run(LOSS, feed_dict={tfY: Y})
AttributeError: 'Tensor' object has no attribute 'assign'
A tensor object correctly has no assign attribute, but I cannot find any other function attached to the object that could do just that. How do I update my tensor correctly?