I have a data set that looks like
    "","OBSERV","DIOX","logDIOX","OXYGEN","LOAD","PRSEK","PLANT","TIME","LAB"
"1",1011,984.06650389,6.89169348002254,"L","H","L","RENO_N","1","KK"
"2",1022,1790.7973641,7.49041625445373,"H","H","L","RENO_N","1","USA"
"3",1031,661.95870145,6.4952031694744,"L","H","H","RENO_N","1","USA"
"4",1042,978.06853583,6.88557974511529,"H","H","H","RENO_N","1","KK"
"5",1051,270.92290942,5.60183431332639,"N","N","N","RENO_N","1","USA"
"6",1062,402.98269729,5.99889362626069,"N","N","N","RENO_N","1","USA"
"7",1071,321.71945701,5.77367991426247,"H","L","L","RENO_N","1","KK"
"8",1082,223.15260359,5.40785585845064,"L","L","L","RENO_N","1","USA"
"9",1091,246.65350151,5.507984523849,"H","L","H","RENO_N","1","USA"
"10",1102,188.48323034,5.23900903921703,"L","L","H","RENO_N","1","KK"
"11",1141,267.34994025,5.58855843790491,"N","N","N","RENO_N","1","KK"
"12",1152,452.10355987,6.11391126834609,"N","N","N","RENO_N","1","KK"
"13",2011,2569.6672555,7.85153169693888,"N","N","N","KARA","1","USA"
"14",2021,604.79620572,6.40489155123453,"N","N","N","KARA","1","KK"
"15",2031,2610.4804449,7.86728956188212,"L","H",NA,"KARA","1","KK"
"16",2032,3789.7097503,8.24004471210954,"L","H",NA,"KARA","1","USA"
"17",2052,338.97054188,5.82591320649553,"L","L","L","KARA","1","KK"
"18",2061,391.09027375,5.96893841249289,"H","L","H","KARA","1","USA"
"19",2092,410.04420258,6.01626496505788,"N","N","N","KARA","1","USA"
"20",2102,313.51882368,5.74785940190679,"N","N","N","KARA","1","KK"
"21",2112,1242.5931417,7.12495571830002,"H","H","H","KARA","1","KK"
"22",2122,1751.4827969,7.46821802066524,"H","H","L","KARA","1","USA"
"23",3011,60.48026048,4.10231703874031,"N","N","N","RENO_S","1","KK"
"24",3012,257.27729731,5.55015448107691,"N","N","N","RENO_S","1","USA"
"25",3021,46.74282552,3.84466077914493,"N","N","N","RENO_S","1","KK"
"26",3022,73.605375516,4.29871805996994,"N","N","N","RENO_S","1","KK"
"27",3031,108.25433812,4.68448344109116,"H","H","L","RENO_S","1","KK"
"28",3032,124.40704234,4.82355878915293,"H","H","L","RENO_S","1","USA"
"29",3042,123.66859296,4.81760535031397,"L","H","L","RENO_S","1","KK"
"30",3051,170.05332632,5.13611207209694,"N","N","N","RENO_S","1","USA"
"31",3052,95.868704018,4.56297958887925,"N","N","N","RENO_S","1","KK"
"32",3061,202.69261215,5.31169060558111,"N","N","N","RENO_S","1","USA"
"33",3062,70.686307069,4.25825187761015,"N","N","N","RENO_S","1","USA"
"34",3071,52.034715526,3.95191110210073,"L","H","H","RENO_S","1","KK"
"35",3072,93.33525462,4.53619789950355,"L","H","H","RENO_S","1","USA"
"36",3081,121.47464906,4.79970559129829,"H","H","H","RENO_S","1","USA"
"37",3082,94.833869239,4.55212661590867,"H","H","H","RENO_S","1","KK"
"38",3091,68.624596439,4.22865101914209,"H","L","L","RENO_S","1","USA"
"39",3092,64.837097371,4.17187792984139,"H","L","L","RENO_S","1","KK"
"40",3101,32.351569811,3.47666254561192,"L","L","L","RENO_S","1","KK"
"41",3102,29.285124102,3.37707967726539,"L","L","L","RENO_S","1","USA"
"42",3111,31.36974463,3.44584388158928,"L","L","H","RENO_S","1","USA"
"43",3112,28.127853881,3.33676032670116,"L","L","H","RENO_S","1","KK"
"44",3121,91.825330102,4.51988818660262,"H","L","H","RENO_S","1","KK"
"45",3122,136.4559307,4.91600171048243,"H","L","H","RENO_S","1","USA"
"46",4011,126.11889968,4.83722511024933,"H","L","H","RENO_N","2","KK"
"47",4022,76.520259821,4.33755554003153,"L","L","L","RENO_N","2","KK"
"48",4032,93.551979795,4.53851721545715,"L","L","H","RENO_N","2","USA"
"49",4041,207.09703422,5.33318744777751,"H","L","L","RENO_N","2","USA"
"50",4052,383.44185307,5.94918798759058,"N","N","N","RENO_N","2","USA"
"51",4061,156.79345897,5.05492939129363,"N","N","N","RENO_N","2","USA"
"52",4071,322.72413197,5.77679787769979,"L","H","L","RENO_N","2","USA"
"53",4082,554.05710342,6.31726775620079,"H","H","H","RENO_N","2","USA"
"54",4091,122.55552697,4.80856420867156,"N","N","N","RENO_N","2","KK"
"55",4102,112.70050456,4.72473389805434,"N","N","N","RENO_N","2","KK"
"56",4111,94.245481423,4.54590288271731,"L","H","H","RENO_N","2","KK"
"57",4122,323.16498582,5.77816298482521,"H","H","L","RENO_N","2","KK"
I define a linear model in R using lm as
lm1 <- lm(logDIOX ~ 1 + OXYGEN + LOAD + PLANT + TIME + LAB, data=data)
and I want to interpret the estimated coefficients. However, when I extract the coefficients I get multiple 'NAs' (I'm assuming it's due to linear dependencies among the variables). How can I then interpret the coefficients? I only have one intercept that somehow represents one of the levels of each of the included factors in the model. Is it possible to get an estimate for each factor level?
> summary(lm1)
Coefficients:
    Call:
lm(formula = logDIOX ~ OXYGEN + LOAD + PLANT + TIME + LAB, data = data)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.90821 -0.32102 -0.08993  0.27311  0.97758 
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   7.2983     0.2110  34.596  < 2e-16 ***
OXYGENL      -0.4086     0.1669  -2.449 0.017953 *  
OXYGENN      -0.7567     0.1802  -4.199 0.000113 ***
LOADL        -1.0645     0.1675  -6.357 6.58e-08 ***
LOADN             NA         NA      NA       NA    
PLANTRENO_N  -0.6636     0.2174  -3.052 0.003664 ** 
PLANTRENO_S  -2.3452     0.1929 -12.158  < 2e-16 ***
TIME2        -0.9160     0.2065  -4.436 5.18e-05 ***
LABUSA        0.3829     0.1344   2.849 0.006392 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5058 on 49 degrees of freedom
Multiple R-squared:  0.8391,    Adjusted R-squared:  0.8161 
F-statistic:  36.5 on 7 and 49 DF,  p-value: < 2.2e-16
 
    