If you need many array manipulation, then numpy is the best choice in python
>>> import numpy
>>> data = numpy.array([(2, 4, 8), (3, 6, 5), (7, 5, 2)])
>>> data
array([[2, 4, 8],
       [3, 6, 5],
       [7, 5, 2]])
>>> data.sum()  # product of all elements
42
>>> data.sum(axis=1)   # sum of elements in rows
array([14, 14, 14])
>>> data.sum(axis=0)   # sum of elements in columns
array([12, 15, 15])
>>> numpy.product(data, axis=1)   # product of elements in rows
array([64, 90, 70])
>>> numpy.product(data, axis=0)   # product of elements in columns
array([ 42, 120,  80])
>>> numpy.product(data)      # product of all elements
403200
or element wise operation with arrays
>>> x,y,z = map(numpy.array,[(2, 4, 8), (3, 6, 5), (7, 5, 2)])
>>> x
array([2, 4, 8])
>>> y
array([3, 6, 5])
>>> z
array([7, 5, 2])
>>> x*y
array([ 6, 24, 40])
>>> x*y*z
array([ 42, 120,  80])
>>> x+y+z
array([12, 15, 15])
element wise mathematical operations, e.g.
>>> numpy.log(data)
array([[ 0.69314718,  1.38629436,  2.07944154],
       [ 1.09861229,  1.79175947,  1.60943791],
       [ 1.94591015,  1.60943791,  0.69314718]])
>>> numpy.exp(x)
array([    7.3890561 ,    54.59815003,  2980.95798704])