Not the fastest method, but you can generate a robust solution using scipy for n-dimensional arrays and n-dimensional patterns.
import scipy
from scipy.ndimage import label
#=================
# Helper functions
#=================
# Nested list to nested tuple helper function
# from https://stackoverflow.com/questions/27049998/convert-a-mixed-nested-list-to-a-nested-tuple
def to_tuple(L):
    return tuple(to_tuple(i) if isinstance(i, list) else i for i in L)
# Helper function to convert array to set of tuples
def arr2set(arr):
    return set(to_tuple(arr.tolist()))
#===============
# Main algorithm
#===============
# First pass: filter for exact matches
a1 = scipy.zeros_like(a, dtype=bool)
freq_dict = {}
notnan = ~scipy.isnan(pattern)
for i in scipy.unique(pattern[notnan]):
    a1 = a1 + (a == i)
    freq_dict[i] = (pattern == i).sum()
# Minimise amount of pattern checking by choosing least frequent occurrence
check_val = freq_dict.keys()[scipy.argmin(freq_dict.values())]
# Get set of indices of pattern
pattern_inds = scipy.transpose(scipy.nonzero(scipy.ones_like(pattern)*notnan))
check_ind = scipy.transpose(scipy.nonzero(pattern == check_val))[0]
pattern_inds = pattern_inds - check_ind
pattern_inds_set = arr2set(pattern_inds)
# Label different regions found in first pass which may contains pattern
label_arr, n = label(a1)
found_inds_list = []
pattern_size = len(pattern_inds)
for i in range(1, n+1):
    arr_inds = scipy.transpose(scipy.nonzero(label_arr == i))
    bbox_inds = [ind for ind in arr_inds if a[tuple(ind)] == check_val]
    for ind in bbox_inds:
        check_inds_set = arr2set(arr_inds - ind)
        if len(pattern_inds_set - check_inds_set) == 0:
            found_inds_list.append(tuple(scipy.transpose(pattern_inds + ind)))
# Replace values
for inds in found_inds_list:
    a[inds] = replace_value
Generate a random test array, pattern, and final replace value for a 4D case
replace_value = scipy.random.rand() # Final value that you want to replace everything with
nan = scipy.nan # Use this for places in the rectangular pattern array that you don't care about checking
# Generate random data
a = scipy.random.random([12,12,12,12])*12
pattern = scipy.random.random([3,3,3,3])*12
# Put the pattern in random places
for i in range(4):
    j1, j2, j3, j4 = scipy.random.choice(xrange(10), 4, replace=True)
    a[j1:j1+3, j2:j2+3, j3:j3+3, j4:j4+3] = pattern
a_org = scipy.copy(a)
# Randomly insert nans in the pattern
for i in range(20):
    j1, j2, j3, j4 = scipy.random.choice(xrange(3), 4, replace=True)
    pattern[j1, j2, j3, j4] = nan
After running the main algorithm...
>>> print found_inds_list[-1]
(array([ 9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,
        9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
       10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
       11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11], dtype=int64), array([1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1,
       1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3],
      dtype=int64), array([5, 5, 5, 6, 6, 6, 7, 7, 5, 5, 6, 6, 7, 7, 7, 5, 5, 6, 6, 7, 5, 5,
       5, 6, 6, 7, 7, 5, 5, 6, 7, 7, 7, 5, 5, 5, 6, 6, 6, 7, 7, 7, 5, 5,
       5, 6, 6, 7, 5, 5, 5, 6, 6, 6, 7, 5, 5, 6, 6, 6, 7, 7, 7],
      dtype=int64), array([1, 2, 3, 1, 2, 3, 1, 3, 1, 3, 1, 3, 1, 2, 3, 2, 3, 1, 2, 2, 1, 2,
       3, 1, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2,
       3, 1, 3, 1, 1, 2, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3],
      dtype=int64))
>>>
>>> replace_value # Display value that's going to be replaced
0.9263912485289564
>>>
>>> print a_org[9:12, 1:4, 5:8, 1:4] # Display original rectangular window of replacement
[[[[ 9.68507479  1.77585089  5.06069382]
   [10.63768984 11.41148096  1.13120712]
   [ 6.83684611  2.46838238 11.40490158]]
  [[ 9.17344668 11.21669704  7.60737639]
   [ 3.14870787  6.22857282  5.61295454]
   [ 4.32709261  8.00493326  9.96124294]]
  [[ 4.16785078 10.66054365  2.95677408]
   [11.53789218  2.70725911 11.98647139]
   [ 5.00346525  4.75230895  4.05213149]]]
 [[[11.23856096  8.45979355  7.53268864]
   [ 6.14703327 11.90052117  5.48127994]
   [ 2.16777734 10.27373562  7.75420214]]
  [[10.04726853 11.44895046  7.78071007]
   [ 0.79030038  3.69735083  1.51921116]
   [11.29782542  2.58494314  9.8714708 ]]
  [[ 7.9356587   1.48053473  9.71362122]
   [ 5.11866341  3.43895455  6.86491947]
   [ 8.33774813  5.66923131  2.27884056]]]
 [[[ 0.75091443  2.02917445  5.68207987]
   [ 4.58299978  7.14960394  9.13853129]
   [10.60912932  4.52190424  0.6557605 ]]
  [[ 0.54393627  8.02341744 11.69489975]
   [ 9.09878676 10.60836714  2.41188805]
   [ 9.13098333  6.12284334  8.9349382 ]]
  [[ 5.84489355 10.19848245  1.65080169]
   [ 2.75161562  1.05154552  0.17804374]
   [ 3.3166642  10.74081484  5.13601563]]]]
>>>
>>> print a[9:12, 1:4, 5:8, 1:4] # Same window in the replaced array
[[[[ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  2.46838238  0.92639125]]
  [[ 0.92639125 11.21669704  0.92639125]
   [ 0.92639125  6.22857282  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]]
  [[ 4.16785078  0.92639125  0.92639125]
   [ 0.92639125  0.92639125 11.98647139]
   [ 5.00346525  0.92639125  4.05213149]]]
 [[[ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  5.48127994]
   [ 0.92639125 10.27373562  0.92639125]]
  [[ 0.92639125  0.92639125  7.78071007]
   [ 0.79030038  0.92639125  1.51921116]
   [ 0.92639125  0.92639125  0.92639125]]
  [[ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]]]
 [[[ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  7.14960394  0.92639125]
   [ 0.92639125  4.52190424  0.6557605 ]]
  [[ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]
   [ 9.13098333  0.92639125  8.9349382 ]]
  [[ 0.92639125 10.19848245  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]
   [ 0.92639125  0.92639125  0.92639125]]]]
>>>
>>> print pattern # The pattern that was matched and replaced
[[[[ 9.68507479  1.77585089  5.06069382]
   [10.63768984 11.41148096  1.13120712]
   [ 6.83684611         nan 11.40490158]]
  [[ 9.17344668         nan  7.60737639]
   [ 3.14870787         nan  5.61295454]
   [ 4.32709261  8.00493326  9.96124294]]
  [[        nan 10.66054365  2.95677408]
   [11.53789218  2.70725911         nan]
   [        nan  4.75230895         nan]]]
 [[[11.23856096  8.45979355  7.53268864]
   [ 6.14703327 11.90052117         nan]
   [ 2.16777734         nan  7.75420214]]
  [[10.04726853 11.44895046         nan]
   [        nan  3.69735083         nan]
   [11.29782542  2.58494314  9.8714708 ]]
  [[ 7.9356587   1.48053473  9.71362122]
   [ 5.11866341  3.43895455  6.86491947]
   [ 8.33774813  5.66923131  2.27884056]]]
 [[[ 0.75091443  2.02917445  5.68207987]
   [ 4.58299978         nan  9.13853129]
   [10.60912932         nan         nan]]
  [[ 0.54393627  8.02341744 11.69489975]
   [ 9.09878676 10.60836714  2.41188805]
   [        nan  6.12284334         nan]]
  [[ 5.84489355         nan  1.65080169]
   [ 2.75161562  1.05154552  0.17804374]
   [ 3.3166642  10.74081484  5.13601563]]]]