I was interested in preserving one side of a log sampled plot so I came up with this:
(downsample being my first attempt)
def downsample(x, y, target_length=1000, preserve_ends=0):
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    data = np.vstack((x, y))
    if preserve_ends > 0:
        l, data, r = np.split(data, (preserve_ends, -preserve_ends), axis=1)
    interval = int(data.shape[1] / target_length) + 1
    data = data[:, ::interval]
    if preserve_ends > 0:
        data = np.concatenate([l, data, r], axis=1)
    return data[0, :], data[1, :]
def geom_ind(stop, num=50):
    geo_num = num
    ind = np.geomspace(1, stop, dtype=int, num=geo_num)
    while len(set(ind)) < num - 1:
        geo_num += 1
        ind = np.geomspace(1, stop, dtype=int, num=geo_num)
    return np.sort(list(set(ind) | {0}))
def log_downsample(x, y, target_length=1000, flip=False):
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    data = np.vstack((x, y))
    if flip:
        data = np.fliplr(data)
    data = data[:, geom_ind(data.shape[1], num=target_length)]
    if flip:
        data = np.fliplr(data)
    return data[0, :], data[1, :]
which allowed me to better preserve one side of plot:
newx, newy = downsample(x, y, target_length=1000, preserve_ends=50)
newlogx, newlogy = log_downsample(x, y, target_length=1000)
f = plt.figure()
plt.gca().set_yscale("log")
plt.step(x, y, label="original")
plt.step(newx, newy, label="downsample")
plt.step(newlogx, newlogy, label="log_downsample")
plt.legend()
