inspired by SO this answer I'm using teh do dplyr to perform several regressions at once, I would however like to display my output using texreg and do() produces a rowwise_df object, but if I extract the list of regression some information seem to have been lost. Is there a simply way to solve this? The minimal example below. 
First some required packages
# install.packages(c("tidyverse", "broom", "texreg"), dependencies = TRUE)
library(tidyverse)
Second, some dummy data
df.h = data.frame( 
  hour     = factor(rep(1:6, each = 21)),
  price    = runif(504, min = -10, max = 125),
  wind     = runif(504, min = 0, max = 2500),
  temp     = runif(504, min = - 10, max = 25)  
)
Third the do()
dfHour = df.h %>% group_by(hour) %>%
  do(fitHour = lm(price ~ wind + temp, data = .))
Forth, get the coefficients by group in a tidy data_frame
library(broom)
dfHourCoef = tidy(dfHour, fitHour)
dfHourCoef
#> # A tibble: 72 x 6
#> # Groups:   hour [6]
#>    hour  term          estimate std.error statistic  p.value
#>    <fct> <chr>            <dbl>     <dbl>     <dbl>    <dbl>
#>  1 1     (Intercept)  78.2       17.6       4.44    0.000316
#>  2 1     wind          0.000145   0.0107    0.0135  0.989   
#>  3 1     temp        - 1.27       0.834    -1.52    0.145   
#>  4 2     (Intercept)  69.7       18.9       3.68    0.00171 
#>  5 2     wind        - 0.0150     0.0121   -1.24    0.232   
#>  6 2     temp        - 0.00355    0.989    -0.00359 0.997   
#>  7 3     (Intercept)  61.0       14.1       4.32    0.000413
#>  8 3     wind        - 0.00599    0.00987  -0.607   0.552   
#>  9 3     temp          0.603      0.704     0.858   0.402   
#> 10 4     (Intercept)  57.9       19.1       3.02    0.00729 
#> # ... with 8 more rows
I would however like to use texreg, I've tried something like this, but the output gets scrambled up somehow. Any help would be appreciated.
library(texreg)
class(dfHour[[2]])
#> [1] "list"
screenreg(dfHour[[2]]) # Not working
doing it manually would look something like this,
fit1 <- lm(price ~ wind + temp, data = subset(df.h, hour == 1))
fit2 <- lm(price ~ wind + temp, data = subset(df.h, hour == 2))
fit3 <- lm(price ~ wind + temp, data = subset(df.h, hour == 3))
fit4 <- lm(price ~ wind + temp, data = subset(df.h, hour == 4))
fit5 <- lm(price ~ wind + temp, data = subset(df.h, hour == 5))
fit6 <- lm(price ~ wind + temp, data = subset(df.h, hour == 6))
fits <- list(fit1, fit2, fit3, fit4, fit5, fit6)
texreg::screenreg(fits)
#> =================================================================================
#>              Model 1     Model 2    Model 3     Model 4    Model 5     Model 6   
#> ---------------------------------------------------------------------------------
#> (Intercept)   78.23 ***   69.73 **   60.96 ***   57.87 **   89.18 ***   64.29 ***
#>              (17.62)     (18.94)    (14.11)     (19.14)    (19.08)     (15.62)   
#> wind           0.00       -0.01      -0.01       -0.01      -0.01        0.00    
#>               (0.01)      (0.01)     (0.01)      (0.01)     (0.01)      (0.01)   
#> temp          -1.27       -0.00       0.60        1.39      -0.48       -2.17 *  
#>               (0.83)      (0.99)     (0.70)      (0.94)     (0.98)      (0.93)   
#> ---------------------------------------------------------------------------------
#> R^2            0.11        0.08       0.05        0.11       0.06        0.23    
#> Adj. R^2       0.02       -0.02      -0.05        0.01      -0.05        0.15    
#> Num. obs.     21          21         21          21         21          21       
#> RMSE          35.24       41.60      32.59       41.44      39.87       38.39    
#> =================================================================================
#> *** p < 0.001, ** p < 0.01, * p < 0.05#> 
 
    