UPDATE Using different solutions found throughout the site:
I still cannot achieve the desired output using the stack and ldply functions:
The desired output would look like this:
  Dataset              Samples
1     WGS        nrow(WGS.ped)
2     WES    nrow(WES.ped.exp)
3    MIPS   nrow(MIPS.ped.exp)
1) ldply: How to assign a name to columns V1 and .id?
ldply(list(WGS=WGS.ped, WES=WES.ped.exp, MIPS=mips.ped.exp), 
      function(l)(Samples=nrow(l)))
   .id    V1
1  WGS  3908
2  WES 26367
3 MIPS 14193
2) ldply: How to assign a name to columns V1 and .id?
ldply(list(WGS=WGS.ped, WES=WES.ped.exp, MIPS=mips.ped.exp), nrow)
   .id    V1
1  WGS  3908
2  WES 26367
3 MIPS 14193
3) lapply %>% as.data.frame : Returns the data frame names as columns, instead of as a first column 'Dataset'. 
lapply(list(WGS=WGS.ped, WES=WES.ped.exp, MIPS=mips.ped.exp), nrow) %>% 
  as.data.frame
   WGS   WES  MIPS
1 3908 26367 14193
4) sapply %>% stack : How to reverse the order of the columns? And how to indicate column names with stack?
sapply(list(WGS=WGS.ped, WES=WES.ped.exp, MIPS=mips.ped.exp), nrow) %>% 
  stack()
  values  ind
1   3908  WGS
2  26367  WES
3  14193 MIPS
5) map %>% as.data.frame : Returns the data frame names as columns, instead of as a first column 'Dataset'. 
map(list(WGS=WGS.ped, WES=WES.ped.exp, MIPS=mips.ped.exp), nrow) %>% 
  as.data.frame()
 WGS   WES  MIPS 
 3908 26367 14193 
I have three data frames WGS.ped, WES.ped,exp and MIPS.ped.exp.
I want to create a new data frame that summarizes their row count / the total number of rows in each data frame.
The desired output would look like this:
Dataset Samples
WGS     nrow(WGS.ped)
WES     nrow(WES.ped.exp)
MIPS    nrow(MIPS.ped.exp)
What is an efficient and reproducible way to achieve this, preferably with dplyr?
Thanks!
 
     
    