You can first remove the column K, and then do fit <- lm(L ~ ., data = foo). This will treat the L column as the dependent variable and all the other columns as the independent variables. You don't have to specify each column names in the formula.
Here is an example using the mtcars, fitting a multiple regression model to mpg with all the other variables except carb.
mtcars2 <- mtcars[, !names(mtcars) %in% "carb"]
fit <- lm(mpg ~ ., data = mtcars2)
summary(fit)
# Call:
#   lm(formula = mpg ~ ., data = mtcars2)
# 
# Residuals:
#   Min      1Q  Median      3Q     Max 
# -3.3038 -1.6964 -0.1796  1.1802  4.7245 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)   
# (Intercept) 12.83084   18.18671   0.706  0.48790   
# cyl         -0.16881    0.99544  -0.170  0.86689   
# disp         0.01623    0.01290   1.259  0.22137   
# hp          -0.02424    0.01811  -1.339  0.19428   
# drat         0.70590    1.56553   0.451  0.65647   
# wt          -4.03214    1.33252  -3.026  0.00621 **
# qsec         0.86829    0.68874   1.261  0.22063   
# vs           0.36470    2.05009   0.178  0.86043   
# am           2.55093    2.00826   1.270  0.21728   
# gear         0.50294    1.32287   0.380  0.70745   
# ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 2.593 on 22 degrees of freedom
# Multiple R-squared:  0.8687,  Adjusted R-squared:  0.8149 
# F-statistic: 16.17 on 9 and 22 DF,  p-value: 9.244e-08