There is a common misconception that when you make a method async, it will be actually executed asynchronously (i.e. on a separate thread). That is not the case: async and await are a means to synchronize already asnychronous code. If you have nothing that is executed on a separate thread, your async code will run fully synchronously to the end.
Since getDataAsync is executed on the same thread as the MyViewModel constructor, you can run into a deadlock, since the thread waits for itself. When you use ConfigureAwait, you can avoid this situation.
Whether you actually should do that is a different question. What you are actually doing with ConfigureAwait is to start the task and to allow the await to continue on a separate context (which can be on a separate thread). Apart from the fact that you are not even using await here, continuation in a different context can become a problem when you want to execute UI operations after the await.
If you want to be sure that you can wait for getDataAsync in your constructor, you can use Task.Run to force execution in the thread pool:
var getDataTask = Task.Run((Func<Task>)getDataAsync);
//Do something else
getDataTask.Wait();
Everything you execute between Task.Run and the Wait() can run during the execution of getDataAsync. Whether parallelism is actually worth it here depends on what else you do until the Wait().
What you are doing in the MyViewModel constructor is to finally synchronize all asynchronous operations and make the execution of the constructor synchronous. If you want to run that operation asynchronously, you would need to start another task to do it. So you should be really sure that beyond that point async is not required anymore. If it is, run the initialization on another async method, await getDataAsync() there and synchronize somewhere up the call chain.