I was trying to read a very huge MySQL table made of several millions of rows. I have used Pandas library and chunks. See the code below:
import pandas as pd
import numpy as np
import pymysql.cursors
connection = pymysql.connect(user='xxx', password='xxx', database='xxx', host='xxx')
try:
    with connection.cursor() as cursor:
        query = "SELECT * FROM example_table;"
        chunks=[]
        for chunk in pd.read_sql(query, connection, chunksize = 1000):
            chunks.append(chunk)
        #print(len(chunks))    
        result = pd.concat(chunks, ignore_index=True)
        #print(type(result))
        #print(result)
finally:
    print("Done!")
    connection.close()
Actually the execution time is acceptable if I limit the number of rows to select. But if want to select also just a minimum of data (for example 1 mln of rows) then the execution time dramatically increases.
Maybe is there a better/faster way to select the data from a relational database within python?
 
     
     
    