you are looking for the attributes function:
 set.seed(1)
 mat = matrix(rnorm(1000),,10) # Suppose you have 10 columns
 s = scale(mat) # scale your data
 attributes(s)#This gives you the means and the standard deviations:
$`dim`
[1] 100  10
$`scaled:center`
 [1]  0.1088873669 -0.0378080766  0.0296735350  0.0516018586 -0.0391342406 -0.0445193567 -0.1995797418
 [8]  0.0002549694  0.0100772648  0.0040650015
$`scaled:scale`
 [1] 0.8981994 0.9578791 1.0342655 0.9916751 1.1696122 0.9661804 1.0808358 1.0973012 1.0883612 1.0548091
These values can also be obtained as:
 colMeans(mat)
 [1]  0.1088873669 -0.0378080766  0.0296735350  0.0516018586 -0.0391342406 -0.0445193567 -0.1995797418
 [8]  0.0002549694  0.0100772648  0.0040650015
 sqrt(diag(var(mat)))
 [1] 0.8981994 0.9578791 1.0342655 0.9916751 1.1696122 0.9661804 1.0808358 1.0973012 1.0883612 1.0548091
you get a list that you can subset the way you want:
or you can do 
attr(s,"scaled:center")
 [1]  0.1088873669 -0.0378080766  0.0296735350  0.0516018586 -0.0391342406 -0.0445193567 -0.1995797418
 [8]  0.0002549694  0.0100772648  0.0040650015
attr(s,"scaled:scale")
 [1] 0.8981994 0.9578791 1.0342655 0.9916751 1.1696122 0.9661804 1.0808358 1.0973012 1.0883612 1.0548091