I often work with dataframes with "R-friendly"/"programmer-friendly" column names, typically with no spaces, and/or abbreviated (lazy to type the full names when doing the analysis). For example:
ir <- data.frame(
   sp=iris$Species,
   sep.len=iris$Sepal.Length,
   sep.wid=iris$Sepal.Width,
   pet.len=iris$Petal.Length,
   pet.wid=iris$Petal.Width
)
When I plot these with ggplot I often want to replace the labels with "user-friendly" column names, e.g.
p <- ggplot(ir, aes(x=sep.len, y=sep.wid, col=sp)) + geom_point() +
  xlab("sepal length") + ylab("sepal width") + 
  scale_color_discrete("species")
Question: Is there some way to specify label mappings to pass into ggplot ?
lazy.labels <- c(
  sp     ='species',
  sep.len='sepal length',
  sep.wid='sepal width',
  pet.len='petal length',
  pet.wid='petal width'
)
And do something like
p + labs(lazy.labels)
or even
p + xlab(lazy.labels[..x..]) + ylab(lazy.labels[..y..])
where ..x.., ..y.. is some automagic ggplot variable holding the name of the current X/Y variable? (then I can put these annotations into a convenience function without having to change them for each graph)
This is particularly useful when I make many plots in reports. I can always rename ir with the "user-friendly" columns, but then I have to do a lot of
ggplot(ir, aes(x=`sepal length`, y=`sepal width`, ...
which is a bit cumbersome because of all the spaces.
 
     
     
    