I like some features of D, but would be interested if they come with a runtime penalty?
To compare, I implemented a simple program that computes scalar products of many short vectors both in C++ and in D. The result is surprising:
- D: 18.9 s [see below for final runtime]
- C++: 3.8 s
Is C++ really almost five times as fast or did I make a mistake in the D program?
I compiled C++ with g++ -O3 (gcc-snapshot 2011-02-19) and D with dmd -O (dmd 2.052) on a moderate recent linux desktop. The results are reproducible over several runs and standard deviations negligible.
Here the C++ program:
#include <iostream>
#include <random>
#include <chrono>
#include <string>
#include <vector>
#include <array>
typedef std::chrono::duration<long, std::ratio<1, 1000>> millisecs;
template <typename _T>
long time_since(std::chrono::time_point<_T>& time) {
      long tm = std::chrono::duration_cast<millisecs>( std::chrono::system_clock::now() - time).count();
  time = std::chrono::system_clock::now();
  return tm;
}
const long N = 20000;
const int size = 10;
typedef int value_type;
typedef long long result_type;
typedef std::vector<value_type> vector_t;
typedef typename vector_t::size_type size_type;
inline value_type scalar_product(const vector_t& x, const vector_t& y) {
  value_type res = 0;
  size_type siz = x.size();
  for (size_type i = 0; i < siz; ++i)
    res += x[i] * y[i];
  return res;
}
int main() {
  auto tm_before = std::chrono::system_clock::now();
  // 1. allocate and fill randomly many short vectors
  vector_t* xs = new vector_t [N];
  for (int i = 0; i < N; ++i) {
    xs[i] = vector_t(size);
      }
  std::cerr << "allocation: " << time_since(tm_before) << " ms" << std::endl;
  std::mt19937 rnd_engine;
  std::uniform_int_distribution<value_type> runif_gen(-1000, 1000);
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < size; ++j)
      xs[i][j] = runif_gen(rnd_engine);
  std::cerr << "random generation: " << time_since(tm_before) << " ms" << std::endl;
  // 2. compute all pairwise scalar products:
  time_since(tm_before);
  result_type avg = 0;
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j) 
      avg += scalar_product(xs[i], xs[j]);
  avg = avg / N*N;
  auto time = time_since(tm_before);
  std::cout << "result: " << avg << std::endl;
  std::cout << "time: " << time << " ms" << std::endl;
}
And here the D version:
import std.stdio;
import std.datetime;
import std.random;
const long N = 20000;
const int size = 10;
alias int value_type;
alias long result_type;
alias value_type[] vector_t;
alias uint size_type;
value_type scalar_product(const ref vector_t x, const ref vector_t y) {
  value_type res = 0;
  size_type siz = x.length;
  for (size_type i = 0; i < siz; ++i)
    res += x[i] * y[i];
  return res;
}
int main() {   
  auto tm_before = Clock.currTime();
  // 1. allocate and fill randomly many short vectors
  vector_t[] xs;
  xs.length = N;
  for (int i = 0; i < N; ++i) {
    xs[i].length = size;
  }
  writefln("allocation: %i ", (Clock.currTime() - tm_before));
  tm_before = Clock.currTime();
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < size; ++j)
      xs[i][j] = uniform(-1000, 1000);
  writefln("random: %i ", (Clock.currTime() - tm_before));
  tm_before = Clock.currTime();
  // 2. compute all pairwise scalar products:
  result_type avg = cast(result_type) 0;
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j) 
      avg += scalar_product(xs[i], xs[j]);
  avg = avg / N*N;
  writefln("result: %d", avg);
  auto time = Clock.currTime() - tm_before;
  writefln("scalar products: %i ", time);
  return 0;
}
 
     
     
     
     
     
     
     
     
    