Edited
Sorry for the misunderstanding of the question. I think the conversion of the zip file can be done as follows. I assume that the 1st and last positions of the file are { and } respectively without any newlines symbols. 
data = eval(f"[{file.replace('\n', ',')}")
Also being inspired by this post I can offer a solution using pure pandas. If we import the data into a pandas DataFrame, by passing to the constructor a list of the dictionaries above, the problem becomes in how to explode a list within a DataFrame's cell. 
This is done by the combination of .apply(pd.Series) that creates multiple columns for the different elements within the list and pd.melt that transforms those columns back into a single column. By previously setting as index the other columns we can save them for the resulting DataFrame. 
Here the code:
   # Formatting the data to be introduced in the pd.DataFrame
    data = [{"id":"1","f":"A","data":[["2040",0],["2039",0],["2038",0],["2037",0],["2036",0]]},
            {"id":"2","f":"A","data":[["2040",0],["2039",0],["2038",0],["2037",0],["2036",0]]},
            {"id":"3","f":"A","data":[["2040",0],["2039",0],["2038",0],["2037",0],["2036",0]]},
            {"id":"4","f":"A","data":[["2040",0],["2039",0],["2038",0],["2037",0],["2036",0]]},
            {"id":"5","f":"A","data":[["2040",0],["2039",0],["2038",0],["2037",0],["2036", 0]]}
           ]
    # And the piece of code
    (pd.melt((pd.DataFrame(data)
               .assign(data=lambda x: [[l[0] for l in ls] for ls in x.data])
               .set_index(['id', 'f'])
               .data.apply(pd.Series)
               .reset_index()
              ), 
             id_vars=['id', 'f'],
             value_name='data'
             )
     .set_index(['id', 'f'])
     .drop('variable', axis=1)
     .dropna()
     .sort_index()
     .reset_index()
     )
    id  f   data
0   1   A   2040
1   1   A   2039
2   1   A   2038
3   1   A   2037
4   1   A   2036
5   2   A   2040
6   2   A   2039
7   2   A   2038
8   2   A   2037
9   2   A   2036
10  3   A   2040
11  3   A   2039
12  3   A   2038
13  3   A   2037
14  3   A   2036
15  4   A   2040
16  4   A   2039
17  4   A   2038
18  4   A   2037
19  4   A   2036
20  5   A   2040
21  5   A   2039
22  5   A   2038
23  5   A   2037
24  5   A   2036