I am a beginner with R. I am using glm to conduct logistic regression and then using the 'margins' package to calculate marginal effects but I don't seem to be able to exclude the missing values in my categorical independent variable.
I have tried to ask R to exclude NAs from the regression. The categorical variable is weight status at age 9 (wgt9), and it has three levels (1, 2, 3) and some NAs.
What am I doing wrong? Why do I get a wgt9NA result in my outputs and how can I correct it?
Thanks in advance for any help/advice.
Conduct logistic regression
summary(logit.phbehav <- glm(obese13 ~ gender + as.factor(wgt9) + aded08b, 
data = gui, weights = bdwg01, family = binomial(link = "logit")))
Regression output
term              estimate std.error statistic   p.value
  <chr>                <dbl>     <dbl>     <dbl>     <dbl>
1 (Intercept)        -3.99      0.293     -13.6  2.86e- 42
2 gender              0.387     0.121       3.19 1.42e-  3
3 as.factor(wgt9)2    2.49      0.177      14.1  3.28e- 45
4 as.factor(wgt9)3    4.65      0.182      25.6  4.81e-144
5 as.factor(wgt9)NA   2.60      0.234      11.1  9.94e- 29
6 aded08b            -0.0755    0.0224     -3.37 7.47e-  4
Calculate the marginal effects
effects_logit_phtotal = margins(logit.phtot) 
print(effects_logit_phtotal)
summary(effects_logit_phtotal)
Marginal effects output
> summary(effects_logit_phtotal)
factor     AME     SE       z      p   lower   upper
aded08a -0.0012 0.0002 -4.8785 0.0000 -0.0017 -0.0007
gender  0.0115 0.0048  2.3899 0.0169  0.0021  0.0210
wgt92  0.0941 0.0086 10.9618 0.0000  0.0773  0.1109
wgt93  0.4708 0.0255 18.4569 0.0000  0.4208  0.5207
wgt9NA  0.1027 0.0179  5.7531 0.0000  0.0677  0.1377
 
    