I have a dataframe df with NaN values and I want to dynamically replace them with the average values of previous and next non-missing values.
In [27]: df 
Out[27]: 
          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3       NaN -2.027325  1.533582
4       NaN       NaN  0.461821
5 -0.788073       NaN       NaN
6 -0.916080 -0.612343       NaN
7 -0.887858  1.033826       NaN
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431
For example, A[3] is NaN so its value should be (-0.120211-0.788073)/2 = -0.454142. A[4] then should be (-0.454142-0.788073)/2 = -0.621108.
Therefore, the result dataframe should look like:
In [27]: df 
Out[27]: 
          A         B         C
0 -0.166919  0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.454142 -2.027325  1.533582
4 -0.621108 -1.319834  0.461821
5 -0.788073 -0.966089 -1.260202
6 -0.916080 -0.612343 -2.121213
7 -0.887858  1.033826 -2.551718
8  1.948430  1.025011 -2.982224
9  0.019698 -0.795876 -0.046431
Is this a good way to deal with the missing values? I can't simply replace them by the average values of each column because my data is time-series and tends to increase over time. (The initial value may be $0 and final value might be $100000, so the average is $50000 which can be much bigger/smaller than the NaN values).
 
     
     
    