My question is similar to Pandas: remove reverse duplicates from dataframe but I have an additional requirement. I need to maintain row value pairs.
For example:
I have data where column A corresponds to column C and column B corresponds to column D. 
import pandas as pd
# Initial data frame
data = pd.DataFrame({'A': [0, 10, 11, 21, 22, 35, 5, 50], 
                     'B': [50, 22, 35, 5, 10, 11, 21, 0],
                     'C': ["a", "b", "r", "x", "c", "w", "z", "y"],
                     'D': ["y", "c", "w", "z", "b", "r", "x", "a"]})
data
#    A   B  C  D
#0   0  50  a  y
#1  10  22  b  c
#2  11  35  r  w
#3  21   5  x  z
#4  22  10  c  b
#5  35  11  w  r
#6   5  21  z  x
#7  50   0  y  a
I would like to remove duplicates that exist in columns A and B but I need to preserve their corresponding letter value in columns C and D. 
I have a solution here but is there a more elegant way of doing this?
# Desired data frame
new_data = pd.DataFrame()
# Concat numbers and corresponding letters
new_data['AC'] = data['A'].astype(str) + ',' + data['C']
new_data['BD'] = data['B'].astype(str) + ',' + data['D']
# Drop duplicates despite order
new_data = new_data.apply(lambda r: sorted(r), axis = 1).drop_duplicates()
# Recreate dataframe
new_data = pd.DataFrame.from_items(zip(new_data.index, new_data.values)).T
new_data = pd.concat([new_data.iloc[:,0].str.split(',', expand=True),
                      new_data.iloc[:,1].str.split(',', expand=True)], axis=1)
new_data.columns=['A', 'B', 'C', 'D']
new_data
#    A  B   C  D
#0   0  a  50  y
#1  10  b  22  c
#2  11  r  35  w
#3  21  x   5  z
EDIT technically output should look like this:
new_data.columns=['A', 'C', 'B', 'D']
new_data
#    A  B   C  D
#0   0  a  50  y
#1  10  b  22  c
#2  11  r  35  w
#3  21  x   5  z