I am writing a Python application which runs Tensorflow model for classfication. Library Keras is used for simplicity. Here is my logging configuration:
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')
handler = RotatingFileHandler(LOG_DIR + '/' + LOG_FILE_NAME, maxBytes=LOG_FILE_MAX_BYTES,backupCount=LOG_FILE_BACKUP_COUNT)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
handler.setFormatter(formatter)
logger = logging.getLogger('')
logger.addHandler(handler)
logging.getLogger('boto').setLevel(logging.WARNING)
logging.getLogger('keras').setLevel(logging.CRITICAL)
logging.getLogger('botocore').setLevel(logging.CRITICAL)
Although I set the logging level of keras to critical, it still prints out some kind of warning at the beginning to STDOUT:
UserWarning: Update your `InputLayer` call to the Keras 2 API: `InputLayer(batch_input_shape=[None, 64,..., sparse=False, name="input_1", dtype="float32")`
  return cls(**config)
UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(trainable=True, name="convolution2d_1", activity_regularizer=None, activation="relu", kernel_size=(3, 3), filters=64, strides=[1, 1], padding="same", data_format="channels_last", kernel_initializer="glorot_uniform", kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, use_bias=True)`
  return cls(**config)
UserWarning: Update your `MaxPooling2D` call to the Keras 2 API: `MaxPooling2D(strides=[2, 2], trainable=True, name="maxpooling2d_1", pool_size=[2, 2], padding="valid", data_format="channels_last")`
  return cls(**config)
Why does this output not being logged to log files? Do I need to create a handler just for keras module and specify the same log file as the rest of the application? CRITICAL is higher than Warning. Why is it still outputting some type of warning?
 
    