I've got a DataFrame with floats, strings, and strings that can be interpreted as dates.
Label encoding across multiple columns in scikit-learn
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseException, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values
class MultiColumnLabelEncoder:
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode
    def fit(self,X,y=None):
        return self # not relevant here
    def transform(self,X):
        '''
        Transforms columns of X specified in self.columns using
        LabelEncoder(). If no columns specified, transforms all
        columns in X.
        '''
        output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output
    def fit_transform(self,X,y=None):
        return self.fit(X,y).transform(X)
num_attributes = ["a", "b", "c"]
num_attributes = list(df_num_median)
str_attributes = list(df_str_only)
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([
    ('selector', DataFrameSelector(num_attributes)), # transforming the Pandas DataFrame into a NumPy array
    ('imputer', Imputer(strategy="median")), # replacing missing values with the median
    ('std_scalar', StandardScaler()), # scaling the features using standardization (subtract mean value, divide by variance)
])
from sklearn.preprocessing import LabelEncoder
str_pipeline = Pipeline([
    ('selector', DataFrameSelector(str_attributes)), # transforming the Pandas DataFrame into a NumPy array 
    ('encoding', MultiColumnLabelEncoder(str_attributes))
])
from sklearn.pipeline import FeatureUnion
full_pipeline = FeatureUnion(transformer_list=[
    ("num_pipeline", num_pipeline),
    #("str_pipeline", str_pipeline) # replaced by line below
    ("str_pipeline", MultiColumnLabelEncoder(str_attributes))
])
df_prepared = full_pipeline.fit_transform(df_combined)
The num_pipeline part of the pipeline works just fine. In the str_pipeline part I get the error
IndexError: only integers, slices (
:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices
This doesn't happen if I comment out the MultiColumnLabelEncoder in the str_pipeline. I also created some code to apply the MultiColumnLabelEncoder on the dataset without the pipeline and it works just fine. Any ideas? As an additional step, I would have to create two separate pipelines for strings and date strings.
EDIT: added DataFrameSelector class

 
    