I want to iterate over an array of arrays and skip to the next array if I've already read the same array. The following code works, but I'm searching a more 'pythonic' style solution.
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, :2]
read = []
for x in X:
    temp = True
    for r in read:
        if np.array_equal(x, r):
            temp = False
    if temp:
        read.append(x)
        # do some stuff
Type and content of X:
>>> type(X)
<class 'numpy.ndarray'>
>>> X
array([[5.1, 3.5],
   [4.9, 3. ],
   [4.9, 3. ]
   [4.7, 3.2],
   [4.6, 3.1],
   [5. , 3.6],
   ...
   [5.9, 3. ]])
For example, when I read [4.9, 3. ] the first time I do some stuff. When I read [4.9, 3. ] again I skip to the next array.
 
    