I'm doing the following operation on a sorted dataset 'df_pre_decay' containing time-series dataset for multiple IDs and I want to decay my 'tactic' variables for each ID at different rates (coming from tactic_decay_dict).
The created variable for decayed tactic variable 'xyz' will have same value as the tactic variable in 1st mnth while for all the other mnth , it will be an addition of ((value of decayed tactic variable 'xyz' in the previous mnth) multiplied by rate) and ((value of tactic variable 'tactic' in the current mnth) multiplied by (1-rate))
time_col = 'mnth'
tactic =['overall_details','speaker_total','overall_samples_eu','copay_redemption_count','voucher_redemption_count','dtc']
tactic_decay_dict = dict.fromkeys(tactic,(60,70))
uniq = len(df_pre_decay[time_col].unique())
## Loops for variables and decay rate
for a in tactic_decay_dict:
for b in tactic_decay_dict[a]:
xyz = a+'_s'+str(b)
## Loops for iterating over each row in the dataset
for i in range(len(df_pre_decay)):
df_pre_decay[xyz] = np.where((i%uniq)!=0,
(df_pre_decay[xyz].iloc[i-1])*b/100+
(df_pre_decay[a].iloc[i])*(100-b)/100,
df_pre_decay[a].iloc[i])
I want to optimize this section of code as it is taking more than 30 mins for 5 million+ rows in my dataset.
Edit: Please find the sample of dataset
ID mnth overall_details speaker_total overall_samples_eu copay_redemption_count voucher_redemption_count dtc
1 201701 3 1 10 9 3 6
1 201702 6 1 0 7 7 10
1 201703 10 8 7 8 9 10
1 201704 3 9 3 0 1 1
1 201705 9 0 8 9 6 4
1 201706 8 3 2 10 8 9
1 201707 3 10 3 0 5 6
1 201708 2 10 3 9 6 2
1 201709 1 3 7 10 8 0
1 201710 3 8 2 8 0 10
1 201711 6 7 4 8 5 6
1 201712 3 8 2 9 4 10
2 201701 7 4 7 4 10 2
2 201702 10 0 2 2 10 5
2 201703 10 6 4 10 5 3
2 201704 4 3 6 4 0 8
2 201705 7 8 9 10 6 10
2 201706 8 0 2 7 1 8
2 201707 10 2 8 1 9 4
2 201708 10 6 7 0 3 5
2 201709 10 10 3 8 9 0
2 201710 2 0 3 5 5 8
2 201711 1 8 0 7 3 4
2 201712 8 5 1 0 7 9
3 201701 2 2 7 7 1 2
3 201702 2 8 10 9 6 9
3 201703 10 5 8 5 9 4
3 201704 6 1 2 4 6 2
3 201705 6 9 4 4 3 0
3 201706 5 1 6 4 1 7
3 201707 0 7 6 9 5 6
3 201708 10 3 2 0 4 5
3 201709 5 8 6 4 10 4
3 201710 8 3 10 6 7 0
3 201711 7 5 6 3 1 10
3 201712 3 9 8 4 10 0