I want to filter the n largest groups based on count, and then do some calculations on the filtered dataframe
Here is some data
Brand <- c("A","B","C","A","A","B","A","A","B","C")
Category <- c(1,2,1,1,2,1,2,1,2,1)
Clicks <- c(10,11,12,13,14,15,14,13,12,11)
df <- data.frame(Brand,Category,Clicks)
|Brand | Category| Clicks|
|:-----|--------:|------:|
|A     |        1|     10|
|B     |        2|     11|
|C     |        1|     12|
|A     |        1|     13|
|A     |        2|     14|
|B     |        1|     15|
|A     |        2|     14|
|A     |        1|     13|
|B     |        2|     12|
|C     |        1|     11|
This is my expected output. I want to filter out the two largest brands by count and then find the mean clicks in each brand / category combination
|Brand | Category| mean_clicks|
|:-----|--------:|-----------:|
|A     |        1|        12.0|
|A     |        2|        14.0|
|B     |        1|        15.0|
|B     |        2|        11.5|
Which I thought could be achieved with code like this (but can't)
df %>%
  group_by(Brand, Category) %>%
  top_n(2, Brand) %>% # Largest 2 brands by count
  summarise(mean_clicks = mean(Clicks))
EDIT: the ideal answer should be able to be used on database tables as well as local tables