I'm trying to write an array of this kind
 phi(m,r) and dphi(m,r) are functions, where cheby and dcheby are Chebyshev polynomials and its derivates respectively,
  Real(kind=8) FUNCTION phi(m,r)
  implicit none 
  integer m
  real(kind=8) r
  real(kind=8) cheby
  if(mod(m,2).eq.0) then
  phi = cheby(m+2,r)-cheby(0,r)
  else if (mod(m,2).eq.1) then 
  phi = cheby(m+2,r) - cheby(1,r)
  end if
  end FUNCTION phi
  Real(kind=8) FUNCTION dphi(m,r)
  implicit none 
   integer m
   real(kind=8) r
   real(kind=8) dcheby  
   if(mod(m,2).eq.0) then
   dphi = dcheby(m+2,r) - dcheby(0,r)
   else if (mod(m,2).eq.1) then 
   dphi = dcheby(m+2,r) - dcheby(1,r)
   end if 
  end FUNCTION dphi
so first i define g and then i used 2nd order- simpson's rule to integrate
Real(kind=8) FUNCTION g(j,i,r)
       implicit none 
       integer i,j
       real(kind=8) r
       real(kind=8) dphi, phi
       real(kind=8) lambda
       g = -dphi(j,r)*dphi(i,r) + lambda*phi(j,r)*phi(i,r)
end FUNCTION g 
Real(kind=8) FUNCTION integrate(j,i)
   implicit none 
   integer i, j
   real(kind=8) g
   Real(kind=8) xmax, xmin
   xmax = 1.0d0
   xmin = -1.0d0 
   integrate =(( xmax -  xmin)/6)*(g(j,i,xmin) +4*g(j,i,0.0d0) + g(j,i,xmax)) 
end FUNCTION integrate
However i don't know how write the matrix, i wrote that
 do i=0,N
     do l=0,N
       A(i,l) = integrate(j,i)
     end do
 end do 
but, when I compiled A= NaN