I've written the following function for estimating the definite integral of a function with Simpson's Rule:
def fnInt(func, a, b):
    if callable(func) and type(a) in [float] and type(b) in [float]:
        if a > b:
            return -1 * fnInt(func, b, a)
        else:
            y1 = nDeriv(func)
            y2 = nDeriv(y1)
            y3 = nDeriv(y2)
            y4 = nDeriv(y3)
            f = lambda t: abs(y4(t))
            k = f(max(f, a, b))
            n = ((1 / 0.00001) * k * (b - a) ** 5 / 180) ** 0.25
            if n > 0:
                n = math.ceil(n) if math.ceil(n) % 2 == 0 else math.ceil(n) + 1
            else:
                n = 2
            x = (b - a) / n
            ans = 0
            for i in range(int((n - 4) / 2 + 1)):
                ans += (x / 3) * (4 * func(a + x * (2 * i + 1)) + 2 * func(a + x * (2 * i + 2)))
            ans += (x / 3) * (func(a) + 4 * func(a + x * (n - 1)) + func(b))
            return ans
    else:
        raise TypeError('Data Type Error')
It seems, however, that whenever I try to use this function, it takes forever to produce an output. Is there a way that I can rewrite this code in order to take up less time?
 
    