I have the following code that takes very long time to execute. The pandas DataFrames df and df_plants are very small (less than 1Mb). I wonder if there is any way to optimise this code:
import pandas as pd
import geopy.distance
import re
def is_inside_radius(latitude, longitude, df_plants, radius):
    if (latitude != None and longitude != None):
        lat = float(re.sub("[a-zA-Z]", "", str(latitude)))
        lon = float(re.sub("[a-zA-Z]", "", str(longitude)))
        for index, row in df_plants.iterrows():
            coords_1 = (lat, lon)
            coords_2 = (row["latitude"], row["longitude"])
            dist = geopy.distance.distance(coords_1, coords_2).km
            if dist <= radius:
                return 1
    return 0
df["inside"] = df.apply(lambda row: is_inside_radius(row["latitude"],row["longitude"],df_plants,10), axis=1)
I use regex to process latitude and longitude in df because the values contain some errors (characters) which should be deleted. 
The function is_inside_radius verifies if row[latitude] and row[longitude] are inside the radius of 10 km from any of the points in df_plants.
 
     
    