When I do train.info() to see overall data types it shows that there are strings "objects" in my data. How do I see what it is by locating the data?
For example, when I do train.info() it shows that 6 columns contain objects. I believe the string is 'asia'. How can I print out all the string objects that are inside my dataframe?
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40000 entries, 0 to 39999
Data columns (total 101 columns):
x0     39989 non-null float64
x1     39990 non-null float64
x2     39992 non-null float64
x3     39991 non-null float64
x4     39992 non-null float64
x5     39994 non-null float64
x6     39990 non-null float64
x7     39991 non-null float64
x8     39994 non-null float64
x9     39993 non-null float64
x10    39991 non-null float64
x11    39993 non-null float64
x12    39989 non-null float64
x13    39986 non-null float64
x14    39997 non-null float64
x15    39996 non-null float64
x16    39993 non-null float64
x17    39988 non-null float64
x18    39986 non-null float64
x19    39992 non-null float64
x20    39995 non-null float64
x21    39987 non-null float64
x22    39994 non-null float64
x23    39992 non-null float64
x24    39986 non-null float64
x25    39989 non-null float64
x26    39991 non-null float64
x27    39992 non-null float64
x28    39989 non-null float64
x29    39995 non-null float64
x30    39996 non-null float64
x31    39992 non-null float64
x32    39996 non-null float64
x33    39990 non-null float64
x34    39993 non-null object
x35    39987 non-null object
x36    39993 non-null float64
x37    39996 non-null float64
x38    39994 non-null float64
x39    39991 non-null float64
x40    39994 non-null float64
x41    39996 non-null object
x42    39988 non-null float64
x43    39998 non-null float64
x44    39998 non-null float64
x45    39995 non-null object
x46    39993 non-null float64
x47    39996 non-null float64
x48    39990 non-null float64
x49    39997 non-null float64
x50    39993 non-null float64
x51    39989 non-null float64
x52    39992 non-null float64
x53    39994 non-null float64
x54    39995 non-null float64
x55    39989 non-null float64
x56    39989 non-null float64
x57    39992 non-null float64
x58    39991 non-null float64
x59    39990 non-null float64
x60    39988 non-null float64
x61    39993 non-null float64
x62    39987 non-null float64
x63    39986 non-null float64
x64    39995 non-null float64
x65    39988 non-null float64
x66    39991 non-null float64
x67    39991 non-null float64
x68    39992 non-null object
x69    39987 non-null float64
x70    39995 non-null float64
x71    39995 non-null float64
x72    39992 non-null float64
x73    39988 non-null float64
x74    39993 non-null float64
x75    39990 non-null float64
x76    39990 non-null float64
x77    39991 non-null float64
x78    39993 non-null float64
x79    39994 non-null float64
x80    39991 non-null float64
x81    39996 non-null float64
x82    39992 non-null float64
x83    39995 non-null float64
x84    39997 non-null float64
x85    39986 non-null float64
x86    39989 non-null float64
x87    39996 non-null float64
x88    39996 non-null float64
x89    39989 non-null float64
x90    39993 non-null float64
x91    39996 non-null float64
x92    39993 non-null float64
x93    39993 non-null object
x94    39992 non-null float64
x95    39992 non-null float64
x96    39985 non-null float64
x97    39987 non-null float64
x98    39994 non-null float64
x99    39987 non-null float64
y      40000 non-null int64
dtypes: float64(94), int64(1), object(6)
memory usage: 30.8+ MB
 
    